
PandABlocks-FPGA Documentation
Release 3.0a1-11-gdb8fdc4-dirty

Tom Cobb

Sep 14, 2021

Introduction

1 PandABlocks-FPGA 1
1.1 What can PandABlocks do? . 1
1.2 How is the documentation structured? . 1

2 Blinking LEDs Tutorial 3
2.1 Opening the GUI . 3
2.2 Loading the tutorial design . 3
2.3 How the design works . 4
2.4 The Bit Bus . 6
2.5 Conclusion . 7

3 Position Capture Tutorial 9
3.1 Loading the tutorial design . 9
3.2 How the design works . 10
3.3 Conclusion . 15

4 Position Compare Tutorial 17

5 Snake Scan Tutorial 19

6 Available Blocks 21
6.1 BITS - Soft inputs and constant bits . 21
6.2 CALC - Position Calc . 22
6.3 CLOCK - Configurable clock . 25
6.4 COUNTER - Up/Down pulse counter . 27
6.5 DIV - Pulse divider . 30
6.6 FILTER - Filter . 33
6.7 FMC_24V - FMC 24V IO Module . 33
6.8 FMC_ACQ427 - FMC ACQ427 Module . 39
6.9 FMC_ACQ430 - FMC ACQ430 Module . 41
6.10 FMC_LOOPBACK - FMC Loopback Module . 41
6.11 INENC - Input encoder . 42
6.12 LUT - 5 Input lookup table . 45
6.13 LVDSIN - LVDS Input . 51
6.14 LVDSOUT - LVDS Output . 52
6.15 OUTENC - Output encoder . 52
6.16 PCAP - Position Capture . 55

i

6.17 PCOMP - Position Compare . 71
6.18 PGEN - Position Generator . 85
6.19 POSENC - Quadrature and step/direction encoder . 97
6.20 PULSE - One-shot pulse delay and stretch . 99
6.21 QDEC - Quadrature Decoder . 110
6.22 SEQ - Sequencer . 112
6.23 SFP_DLS_EVENTR - SFP Event Receiver Module . 129
6.24 SFP_LOOPBACK- SFP Loopback Module . 130
6.25 SFP_PANDA_SYNC - Synchronize data between 2 PandAs . 130
6.26 SFP_UDPONTRIG - SFP UDP on trig Module . 132
6.27 SRGATE - Set Reset Gate . 132
6.28 SYSTEM - System control FPGA . 140
6.29 TTLIN - TTL Input . 140
6.30 TTLOUT - TTL Output . 141

7 Contributing 143
7.1 Running the tests . 143
7.2 Writing VHDL . 143
7.3 Writing Python . 143
7.4 Documentation . 144
7.5 Release Checklist . 144

8 Assembling Blocks into an App 145
8.1 App ini file . 145
8.2 App build process . 146
8.3 Querying the App at runtime . 146

9 Writing a Block 147
9.1 Architecture . 147
9.2 Modules . 148
9.3 Block ini . 148
9.4 Block Simulation . 150
9.5 Timing ini . 152
9.6 Target ini . 152
9.7 Writing docs . 153
9.8 Block VHDL entity . 153

10 Autogeneration framework architecture 155
10.1 Softblocks . 155
10.2 Wrappers . 155
10.3 Config_d entries . 155
10.4 Test benches . 159

11 Change Log 161
11.1 Unreleased . 161

12 Glossary 163
12.1 App . 163
12.2 Block . 163
12.3 Field . 163
12.4 Module . 163
12.5 PandABox . 163
12.6 PandABlocks Device . 164
12.7 Target Platform . 164
12.8 Zpkg . 164

ii

13 Running the tests 165
13.1 Python tests . 165
13.2 HDL tests . 165

Python Module Index 167

Index 169

iii

iv

CHAPTER 1

PandABlocks-FPGA

PandABlocks-FPGA contains the firmware that runs on the FPGA inside a Zynq module that is the heart of a Pand-
ABlocks Device like PandABox.

1.1 What can PandABlocks do?

PandABlocks is a framework enabling a number of functional Block instances to be written and loaded to an FPGA,
with their parameters (including their connections to other Blocks) changed at runtime. It allows flexible triggering
and processing systems to be created, by users who are unfamiliar with writing FPGA firmware.

1.2 How is the documentation structured?

The documentation is structured into a series of Tutorials and some general Reference documentation. End users and
developers need different documentation, so links for various categories of user are listed below:

1

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

1.2.1 Using an existing PandABlocks device

Work through the Tutorials.

1.2.2 Generating a new set of Blocks for a PandABlocks device

Read Available Blocks to find out what already exists, then read Assembling Blocks into an App to see how to make an
App of these Blocks that can be loaded to a PandABlocks device.

1.2.3 Extending the functionality of a PandABlocks device

Read Available Blocks to see if you need to create a new Block or add to an existing one. Read Writing a Block to find
out how to specify the interface to a Block, VHDL entity, timing tests and docs.

1.2.4 Working on the core autogeneration framework

Read Writing a Block to find out how the process works, then Autogeneration framework architecture for more details
on specific parts of the autogeneration framework

2 Chapter 1. PandABlocks-FPGA

CHAPTER 2

Blinking LEDs Tutorial

This tutorial will introduce you to the basics of PandABlocks, how to wire Blocks together to make different LEDs
flash at different rates

2.1 Opening the GUI

Point your web browser at the ip address or hostname of the PandA and you will be greeted with a welcome page.
At the bottom of this page will be links for Docs, Control and Admin. You can use the Control link to open the Web
Control page that we will use in these tutorials. For more information on the Web Control, see its entry in the Docs
section.

2.2 Loading the tutorial design

The Design dropdown box allows you to select from saved designs stored on the PandA. Selecting an item from this
list will load the saved design over the current Block settings. You can use the Save method to save your current design
if you wish to keep it.

Select “template_tutorial1_leds” from the box and the settings and wiring of the Blocks in the PandA will be changed
to the following:

3

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

If you now look at the front panel of the PandA you should see the first 4 TTL output LEDs turn on sequentially, then
turn off in the opposite order.

2.3 How the design works

The CLOCKS Block is creating a 50% duty cycle pulse train with a period of 1s. PULSE1..4 are taking this as an input
trigger, and producing a different width pulse with a different delay for each PULSE Block. These PULSE Blocks
work as a delay line, queuing a series of pulses up to be sent out when the delay expires.

If you click on one of them you can see its settings:

4 Chapter 2. Blinking LEDs Tutorial

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

2.3. How the design works 5

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

If you increase the delay beyond the 1s period you will notice that the Queued field will increase, but the PULSE
Block will still continue outputting pulses after the desired delay. However if you increase the width beyond the pulse
period the Block will drop the pulse, reporting it via the Dropped field. This is so it avoids merging them together.

You can also try clicking on the CLOCKS Block to modify the period of the input pulse train.

You can also try wiring these outputs to different TTLOUT Blocks by clicking the Palette icon, dragging a TTLOUT
Block onto the canvas, and connecting it up by dragging the PULSE out port to the TTLOUT val port.

2.4 The Bit Bus

All ports on the visible Blocks are blue. They represent bits, single boolean values that can propagate through the
system by connecting Blocks together. These outputs can be viewed on their respective Blocks by clicking them on
the design, or all together by clicking the Bits field in the left hand pane:

If you scroll down to the section with the Pulse blocks you will see the same pattern of flashing lights as on the front
of the PandA

Note: The web GUI polls the PandA at 10Hz, receiving the current value of each bit and whether it has changed. The
web GUI uses this information to reflect the current value of each bit if pulsing at less than 5Hz, and displaying a 5Hz
pulsing value if faster than 5Hz. This means that you will see even short pulses reflected on the web GUI. The front
panel LEDs have a similar behaviour but with a maximum rate of 10Hz.

6 Chapter 2. Blinking LEDs Tutorial

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

2.5 Conclusion

This tutorial has shown how to load a saved design and modify some parameters. It has also introduced the PULSE
delay block that is useful for delaying and stretching trigger signals. It has introduced bit outputs and shown how they
can be connected to the outside world using the TTLOUT Blocks. In the next tutorial we will read about position
outputs, how they can be set and how they can be captured.

2.5. Conclusion 7

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

8 Chapter 2. Blinking LEDs Tutorial

CHAPTER 3

Position Capture Tutorial

This tutorial will introduce you to the Position Capture interface of PandABlocks, how to provide trigger signals to
control when these capture points are taken and visualize the data.

3.1 Loading the tutorial design

Select “template_tutorial2_pcap” from the Design dropdown box and the settings and wiring of the Blocks in the
PandA will be changed to the following:

9

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

3.2 How the design works

This design has two CLOCK Blocks, which are enabled as soon as the PCAP Block becomes active:

• The first CLOCK is wired to PCAP trigger and gate. The gate is a level driven signal that provides the window
of time that a capture should be active over. The trigger is an edge driven signal that actually captures data. In
this example, PCAP.TRIG_EDGE=”Falling” so capture will be triggered on a falling edge of the trigger.

• The second CLOCK is wired to a COUNTER, triggering the increment of the counter value.

We start off with both CLOCK Blocks set to a period of 1s, so each second the COUNTER will increment by one,
followed by a PCAP trigger half a second later. This is best viewed as a timing diagram:

What PCAP does on that trigger is determined by the PCAP Block settings, and the contents of the Bits and Positions
tables. For Bits you can turn capture (instantaneous at the time of trigger) on and off. For Positions, you have a choice
of:

10 Chapter 3. Position Capture Tutorial

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0 1000 2000 3000 4000 5000
Milliseconds

1 2 3 4COUNTER1.OUT

PCAP.ACTIVE

CLOCK1.OUT

CLOCK2.OUT

PCAP.TRIG

Trigger Only

Capture Description
No Don’t capture
Value Instantaneous capture at time of trigger
Diff The difference in the value while gate was high
Sum The sum of all the samples while gate was high
Min The smallest value seen while gate was high
Max The largest value seen while gate was high
Mean The average value seen while gate was high
Min Max Capture both Min and Max
Min Max Mean Capture Min Max and Mean

There are also a handful of other fields like the start of frame, end of frame and trigger time that can be captured by
setting fields on the PCAP Block. If you click on the PCAP Block you will see them in the Outputs section:

3.2. How the design works 11

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

12 Chapter 3. Position Capture Tutorial

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

In the inputs section of the PCAP Block we can see that we have set a delay of 1 for both the Trig and Gate. Delays on
bit inputs are in FPGA clock ticks, and are there to compensate for different length data paths that need to be aligned.
Each Block and each wire in PandA take 1 clock tick each. In this example, both COUNTER1 and PCAP are being
triggered by a CLOCK in the same clock tick, but we want to delay the input to PCAP by one clock tick so that it sees
the updated COUNTER1 value after the corresponding CLOCK rising edge.

Note: The delay fields of the PCAP Block are also shown as small badges on the input ports of the Block

We can set COUNTER1.OUT to capture the Value at trigger by modifying the Positions table and pressing Submit:

Now we can get a client ready to receive data. We can capture data in ASCII or Binary format as detailed in the TCP
server documentation, and TANGO and EPICS have clients to do this. For this tutorial we will just use the ASCII
format on the commandline to check:

$ nc <panda-ip> 8889

Here we could specify binary output and header format, but we’ll just stick with the default ASCII output (the default).
Press Return again, and we will see:

OK

Now go back to the PandA layout and select the PCAP Block, pressing the ARM button. The Active light will go on
and data will start streaming in the terminal window until Disarm is pressed:

missed: 0
process: Scaled

(continues on next page)

3.2. How the design works 13

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

(continued from previous page)

format: ASCII
fields:
COUNTER1.OUT double Value scale: 1 offset: 0 units:

1
2
3
4

END 4 Disarmed

This tallies with the timing diagram we saw above, the captured value matches the instantaneous value of
COUNTER1.OUT when PCAP.TRIG went high.

We will now make the COUNTER1.OUT increment 5 times faster. Set CLOCK2.PERIOD to 0.2s, and click
PCAP.ARM and you will see the captured value change:

missed: 0
process: Scaled
format: ASCII
fields:
COUNTER1.OUT double Value scale: 1 offset: 0 units:

3
8
13
18

END 4 Disarmed

If we look at the timing plot, we can see this also matched what we expect, the value is captured mid way through
each increment of 5:

0 1000 2000 3000 4000 5000
Milliseconds

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19COUNTER1.OUT

PCAP.ACTIVE

CLOCK1.OUT

CLOCK2.OUT

PCAP.TRIG

Trigger Counter 5x faster

Now let’s investigate the other options. If we change the Positions table so COUNTER1.OUT captures the Diff instead
of Value then we will see it captures the difference between the value at the rising edge of the gate, and the falling
edge:

14 Chapter 3. Position Capture Tutorial

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

missed: 0
process: Scaled
format: ASCII
fields:
COUNTER1.OUT double Diff scale: 1 offset: 0 units:

2
2
2
2

END 4 Disarmed

This again matches the timing plot, GATE rises when COUNTER was at 1, and falls at 3, then rises at 6 and falls at 8.

Note: If we hadn’t put in the 1 clock tick delays for Gate and Trig then we would see 3 rather than 2, as GATE would
rise at 0 and fall at 3, then rise at 5 and fall at 8

This capture output is generally used with COUNTER Blocks connected to an input fed from a V2F to capture the
total counts produced in a given time window.

If we change COUNTER1.OUT to capture Min Max and Mean, we will see the other options:

missed: 0
process: Scaled
format: ASCII
fields:
COUNTER1.OUT double Min scale: 1 offset: 0 units:
COUNTER1.OUT double Max scale: 1 offset: 0 units:
COUNTER1.OUT double Mean scale: 1 offset: 0 units:

1 3 1.8
6 8 6.8
11 13 11.8
16 18 16.8

END 4 Disarmed

Here we can see our min and max values as we expected, and also the Mean of the COUNTER value during the total
gate:

(sum of counter_value * time_at_value) / gate_time = mean
(1 * 0.2 + 2 * 0.2 + 3 * 0.1) / 0.5 = 1.8
(6 * 0.2 + 7 * 0.2 + 8 * 0.1) / 0.5 = 6.8

This capture output is generally used with encoders, to give the min, max and mean value of the encoder over a detector
frame.

3.3 Conclusion

This tutorial has shown how to use the Position Capture interface of a PandA to capture entries on the position bus,
and introduced the different capture types. It has also introduced the COUNTER block that is useful connecting to the
pulse train produced by a V2F. In the next tutorial we will read about how to use position compare to generate triggers
from position outputs, and how to configure position capture to work with it.

3.3. Conclusion 15

https://hal.archives-ouvertes.fr/hal-01573024/document
https://hal.archives-ouvertes.fr/hal-01573024/document

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

16 Chapter 3. Position Capture Tutorial

CHAPTER 4

Position Compare Tutorial

This tutorial will introduce you to the concept of Position Compare. It will show a one dimensional scan of an encoder,
how to create trigger pulses at regularly spaced positional intervals, and capture time information.

17

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

18 Chapter 4. Position Compare Tutorial

CHAPTER 5

Snake Scan Tutorial

This tutorial will introduce the concept of table based position compare using the SEQ block to do a two dimensional
‘snake’ scan. This is where the X dimension scans forward over the range, Y steps forward, then X scans backwards,
repeated until the scan is complete.

19

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

20 Chapter 5. Snake Scan Tutorial

CHAPTER 6

Available Blocks

These are the Block types that may be built into an App. Some are soft blocks, and some are tied to particular hardware,
so not all Blocks will be included in every PandABlocks Device.

6.1 BITS - Soft inputs and constant bits

The BITS block contains 4 soft values A..D. Each of these soft values can be set to 0 or 1 by using the SET_A..SET_D
parameters.

6.1.1 Fields

Name Type Description
A param bit The value that output A should take
B param bit The value that output B should take
C param bit The value that output C should take
D param bit The value that output D should take
OUTA bit_out The value of A on the bit bus
OUTB bit_out The value of B on the bit bus
OUTC bit_out The value of C on the bit bus
OUTD bit_out The value of D on the bit bus

6.1.2 Outputs follow parameters

This example shows how the values on the bit bus follow the parameter values after a 1 clock tick propagation delay

21

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0 2 4 6 8 10 12 14
Timestamp (125MHz FPGA clock ticks)

A

B

OUTA

OUTB

Outputs follow inputs

6.2 CALC - Position Calc

The position calc block has an output which is the sum of the position inputs

22 Chapter 6. Available Blocks

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

6.2.1 Fields

Name Type Description
INPA pos_mux Position input A
INPB pos_mux Position input B
INPC pos_mux Position input C
INPD pos_mux Position input D
TYPEA param enum

Source of the value of A for
calculation
0 Value
1 -Value

TYPEB param enum

Source of the value of B for
calculation
0 Value
1 -Value

TYPEC param enum

Source of the value of B for
calculation
0 Value
1 -Value

TYPED param enum

Source of the value of B for
calculation
0 Value
1 -Value

FUNC param enum

Scale divisor after add
0 A+B+C+D

SHIFT param uint Number of places to right shift cal-
culation result before output

OUT pos_out Position output

6.2.2 Adding inputs

The output is the sum of the inputs

6.2.3 Scaling

The scale factor is a bit shift and is applied after the sum.

6.2. CALC - Position Calc 23

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0 2 4 6 8 10
Timestamp (125MHz FPGA clock ticks)

1INPA

1INPB

4INPC

8INPD

1 2 6 14OUT

Adding inputs

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timestamp (125MHz FPGA clock ticks)

0 1 2SHIFT

1INPA

1INPB

10 0INPC

10INPD

1 2 1 6 3 5 3OUT

Scaling

24 Chapter 6. Available Blocks

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

6.2.4 Inverting

Each input can be individually inverted before they are added together

0 5 10 15 20 25
Timestamp (125MHz FPGA clock ticks)

1INPA

1 2INPB

1TYPEB

10INPC

8INPD

1TYPED

1 2 3 -1 9 17 1OUT

Inverting

6.3 CLOCK - Configurable clock

The CLOCK block contains a user-settable 50% duty cycle clock.

6.3.1 Fields

Name Type Description
ENABLE bit_mux Halt and reset on falling edge, enable on rising
PERIOD param time Period of clock output
OUT bit_out Clock output

6.3.2 Setting clock period parameters

Each time a clock parameter is set, the clock restarts from that point with the new period value.

6.3.3 Clock settings while disabled

To start the clock synchronously you can set them while the Block is disabled. It will start on rising edge of ENABLE
and be zeroed on the falling edge.

6.3. CLOCK - Configurable clock 25

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0 5 10 15 20 25 30 35
Timestamp (125MHz FPGA clock ticks)

9 2 0PERIOD

ENABLE

OUT

Setting a parameter starts clock

0 5 10 15 20 25
Timestamp (125MHz FPGA clock ticks)

4 2PERIOD

ENABLE

OUT

Enable low does not run clocks

26 Chapter 6. Available Blocks

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

6.4 COUNTER - Up/Down pulse counter

Each counter block, when enabled, can count up/down with user-defined step value on the rising edge on input trigger.
The counters can also be initialised to a user-defined START value.

6.4.1 Fields

Name Type Description
ENABLE bit_mux Halt on falling edge, reset and enable on rising
TRIG bit_mux Rising edge ticks the counter up/down by STEP
DIR bit_mux Up/Down direction (0 = Up, 1 = Down)
START param int Counter start value
STEP param Up/Down step value
MAX param int Rollover value
MIN param int Value to which counter should rollover to
CARRY bit_out Internal counter overflow status
OUT pos_out Current counter value

6.4.2 Counting pulses

The most common use of a counter block is when you would like to track the number of rising edges received while
enabled:

0 5 10 15 20 25 30 35
Timestamp (125MHz FPGA clock ticks)

ENABLE

TRIG

1 2 3 4OUT

Count Up only when enabled

You can also set the start value to be loaded on enable, and step up by a number other than one:

You can also set the direction that a pulse should apply step, so it becomes an up/down counter. The direction is
sampled on the same clock tick as the pulse rising edge:

6.4.3 Rollover

If the count goes higher than the max value for an int32 (2147483647) the CARRY output gets set high and the counter
rolls. The CARRY output stays high for as long as the trigger input stays high.

A similar thing happens for a negative overflow:

6.4. COUNTER - Up/Down pulse counter 27

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0 5 10 15 20 25 30
Timestamp (125MHz FPGA clock ticks)

6START

4STEP

ENABLE

TRIG

6 10 14 18OUT

Non-zero start and step values

0 5 10 15 20 25 30
Timestamp (125MHz FPGA clock ticks)

ENABLE

TRIG

DIR

1 2 1 2OUT

Setting direction

28 Chapter 6. Available Blocks

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0 5 10 15 20 25 30
Timestamp (125MHz FPGA clock ticks)

2147483645START

ENABLE

TRIG

CARRY

2147483645 2147483646 2147483647 -2147483648OUT

Overflow

0 5 10 15 20 25 30
Timestamp (125MHz FPGA clock ticks)

-2147483645START

3STEP

1DIR

ENABLE

TRIG

CARRY

-2147483645 -2147483648 2147483645OUT

Overflow negative

6.4. COUNTER - Up/Down pulse counter 29

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

6.4.4 Edge cases

If the Enable input goes low at the same time as a trigger, there will be no output value on the next clock tick.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timestamp (125MHz FPGA clock ticks)

20START

ENABLE

TRIG

20 21OUT

Disable and trigger

If the step size is changed at the same time as a trigger input rising edge, the output value for that trigger will be the
new step size.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timestamp (125MHz FPGA clock ticks)

20START

1 2STEP

ENABLE

TRIG

20 21 23OUT

Change step and trigger

6.5 DIV - Pulse divider

A DIV block is a 32-bit pulse divider that can divide a pulse train between two outputs. It has an internal counter that
counts from 0 to DIVISOR-1. On each rising edge of INP, if counter = DIVISOR-1, then it is set to 0 and the pulse is
sent to OUTD, otherwise it is sent to OUTN. Change in any parameter causes the block to be reset.

30 Chapter 6. Available Blocks

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

6.5.1 Fields

Name Type Description
ENABLE bit_mux Reset on falling edge, enable on ris-

ing
INP bit_mux Input pulse train
DIVISOR param Divisor value
FIRST_PULSE param enum

Where to send first pulse
0 OutN
1 OutD

OUTD bit_out Divided pulse output
OUTN bit_out Non-divided pulse output
COUNT read Internal counter value

6.5.2 Which output do pulses go to

With a DIVISOR of 3, the block will send 1 of 3 INP pulses to OUTD and 2 of 3 INP pulses to OUTN. The following
two examples illustrate how the FIRST_PULSE parameter controls the initial value of OUT, which controls whether
OUTD or OUTN gets the next pulse.

0 10 20 30 40 50
Timestamp (125MHz FPGA clock ticks)

3DIVISOR

1ENABLE

INP

OUTN

OUTD

1 2 0 1 2 0 1 2COUNT

Start on OUTN

6.5.3 Reset conditions

If an ENABLE falling edge is received at the same time as an INP rising edge, the input signal is ignored and the block
reset.

6.5. DIV - Pulse divider 31

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0 10 20 30 40 50
Timestamp (125MHz FPGA clock ticks)

3DIVISOR

1ENABLE

1FIRST_PULSE

INP

OUTD

OUTN

2 0 1 2 0 1 2 0 1COUNT

Start on OUTD

0 2 4 6 8 10 12
Timestamp (125MHz FPGA clock ticks)

3DIVISOR

ENABLE

INP

OUTN

COUNT

Reset conditions

32 Chapter 6. Available Blocks

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

6.6 FILTER - Filter

The filter block has two different modes of operation: Difference and Average. They both work by latching the values
on the input and performing an operation comparing to the current value.

6.6.1 Fields

Name Type Description
ENABLE bit_mux Enable event
TRIG bit_mux Trigger event
INP pos_mux Input data
MODE param enum

Select operation mode
0 difference
1 average

READY bit_out Output Ready
OUT pos_out Output data
HEALTH read enum

Error
0 OK
1 Accumulator overflow
2 Divider retrigger

6.6.2 Difference

The difference operation works by latching the value on the input on the rising edge of the Enable signal. On a rising
edge of the trigger signal the output is given as the the current input value minus the latched value.

After the operation, the latched value is updated to be the current value on the input.

The operation continues to work if the current value is less than the latched value: a negative result is outputted

6.6.3 Average

The average function appends a sum value on each clock pulse. When a trigger signal is received it divides the summed
value by the number of clock pulses that have passed.

If a calculation is triggered before the calculation is ready, the system will show an error on the HEALTH output and
will then need to be re-enabled before another calculation can be sent.

6.7 FMC_24V - FMC 24V IO Module

6.7.1 Fields

The module has bee splits into two blocks: The inputs and the outputs.

6.6. FILTER - Filter 33

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timestamp (125MHz FPGA clock ticks)

0MODE

5 8INP

ENABLE

TRIG

READY

3OUT

Difference mode

0 10 20 30 40 50
Timestamp (125MHz FPGA clock ticks)

0MODE

5 7 9 11 13 15INP

ENABLE

TRIG

READY

6 4OUT

Difference mode positive ramping input

34 Chapter 6. Available Blocks

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timestamp (125MHz FPGA clock ticks)

0MODE

50 45 40 35 30 25 20 15 10 5 0 -5 -10INP

ENABLE

TRIG

READY

-25 -30OUT

Difference mode negative ramping input

0 10 20 30 40 50
Timestamp (125MHz FPGA clock ticks)

1MODE

20 40 20 10INP

ENABLE

TRIG

READY

31OUT

Average mode summing inputs

6.7. FMC_24V - FMC 24V IO Module 35

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0 10 20 30 40 50 60 70 80 90
Timestamp (125MHz FPGA clock ticks)

1MODE

567891015 12 13 14 15 16 17INP

ENABLE

TRIG

READY

8 13OUT

Average mode positive ramp

0 10 20 30 40 50 60 70 80 90
Timestamp (125MHz FPGA clock ticks)

1MODE

19181716151412 8 4 0 -4 -8 -10INP

ENABLE

TRIG

READY

15 1OUT

Average mode negative ramp

36 Chapter 6. Available Blocks

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0 20 40 60 80 100 120 140
Timestamp (125MHz FPGA clock ticks)

1MODE

567891011 12 13 14 15 16 7891011 12 13 14 15 16INP

ENABLE

TRIG

READY

2 0HEALTH

8 13OUT

Average mode trigger before calculation ready

0 10 20 30 40 50 60
Timestamp (125MHz FPGA clock ticks)

1MODE

201050-5-10-20INP

ENABLE

TRIG

READY

0OUT

Zero division

6.7. FMC_24V - FMC 24V IO Module 37

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

Name Type Description
IN.FMC_PRSNT read FMC present
IN.VTSEL param enum

Input Voltage Select
0 5V
1 24V

IN.DB param enum

Input Debounce Time Select
0 None
1 0.024ms
2 0.75ms
3 3ms

IN.VAL1 bit_out 24V Input-1
IN.VAL2 bit_out 24V Input-2
IN.VAL3 bit_out 24V Input-3
IN.VAL4 bit_out 24V Input-4
IN.VAL5 bit_out 24V Input-5
IN.VAL6 bit_out 24V Input-6
IN.VAL7 bit_out 24V Input-7
IN.VAL8 bit_out 24V Input-8
IN.FAULT read Input Voltage and Temp Alarm (Ac-

tive Low)
OUT.FMC_PRSNT read FMC present
OUT.VAL1 bit_mux 24V Output-1
OUT.VAL2 bit_mux 24V Output-2
OUT.VAL3 bit_mux 24V Output-3
OUT.VAL4 bit_mux 24V Output-4
OUT.VAL5 bit_mux 24V Output-5
OUT.VAL6 bit_mux 24V Output-6
OUT.VAL7 bit_mux 24V Output-7
OUT.VAL8 bit_mux 24V Output-8
OUT.PWR_ON param enum

Enable Output Power
0 Off
1 On

OUT.PUSHPL param enum

Output Global Push-Pull/High-Side
Select
0 High-side
1 Push-pull

OUT.FLTR param enum

Output Glitch Filter Enable
0 Off
1 On

OUT.SRIAL param enum

Output Serial/Parallel Select
0 Parallel
1 Serial

OUT.EN param enum

Output Enable
0 Disable
1 Enable

OUT.CONFIG param Output Raw Configuration Value
OUT.FAULT read Output Global Fault Output
OUT.STATUS read Output Raw Status Value

38 Chapter 6. Available Blocks

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

6.8 FMC_ACQ427 - FMC ACQ427 Module

6.8.1 Fields

The module has been split into two blocks: the inputs, which controls the ADC; and the outputs, which control the
DAC.

6.8. FMC_ACQ427 - FMC ACQ427 Module 39

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

Name Type Description
IN.GAIN1 param enum

ADC input gain
0 10V
1 5V
2 2.5V
3 1.25V

IN.GAIN2 param enum

ADC input gain
0 10V
1 5V
2 2.5V
3 1.25V

IN.GAIN3 param enum

ADC input gain
0 10V
1 5V
2 2.5V
3 1.25V

IN.GAIN4 param enum

ADC input gain
0 10V
1 5V
2 2.5V
3 1.25V

IN.GAIN5 param enum

ADC input gain
0 10V
1 5V
2 2.5V
3 1.25V

IN.GAIN6 param enum

ADC input gain
0 10V
1 5V
2 2.5V
3 1.25V

IN.GAIN7 param enum

ADC input gain
0 10V
1 5V
2 2.5V
3 1.25V

IN.GAIN8 param enum

ADC input gain
0 10V
1 5V
2 2.5V
3 1.25V

IN.VAL1 pos_out ADC Channel 1 Data
IN.VAL2 pos_out ADC Channel 2 Data
IN.VAL3 pos_out ADC Channel 3 Data]
IN.VAL4 pos_out ADC Channel 4 Data
IN.VAL5 pos_out ADC Channel 5 Data
IN.VAL6 pos_out ADC Channel 6 Data
IN.VAL7 pos_out ADC Channel 7 Data
IN.VAL8 pos_out ADC Channel 8 Data
IN.TTL bit_out 5V TTL input (CLOCK)
IN.ADC_B_FITTED read enum

Whether ADC B inputs are
connected
0 ADC B input fitted
1 Not fitted

OUT.VAL1 pos_mux DAC Channel 1 Data
OUT.VAL2 pos_mux DAC Channel 2 Data
OUT.VAL3 pos_mux DAC Channel 3 Data
OUT.VAL4 pos_mux DAC Channel 4 Data
OUT.GAIN1 param enum

DAC output gain
0 5V
1 10V

OUT.GAIN2 param enum

DAC output gain
0 5V
1 10V

OUT.GAIN3 param enum

DAC output gain
0 5V
1 10V

OUT.GAIN4 param enum

DAC output gain
0 5V
1 10V

OUT.DAC_FITTED read enum

Whether DAC outputs are
connected
0 DAC output fitted
1 Not fitted

40 Chapter 6. Available Blocks

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

6.8.2 Clock note

The ADC runs at 1MHz

6.9 FMC_ACQ430 - FMC ACQ430 Module

6.9.1 Fields

Name Type Description
VAL1 pos_out ADC Channel 1 Data
VAL2 pos_out ADC Channel 2 Data
VAL3 pos_out ADC Channel 3 Data
VAL4 pos_out ADC Channel 4 Data
VAL5 pos_out ADC Channel 5 Data
VAL6 pos_out ADC Channel 6 Data
VAL7 pos_out ADC Channel 7 Data
VAL8 pos_out ADC Channel 8 Data
TTL bit_out C/T 5V TTL input

6.9.2 Clock note

The ADC runs in High Res mode using a divisor of 5 from the main clock frequency.

125 Mhz/5/512 gives and ADC sample rate of 48.828125 kHz

6.10 FMC_LOOPBACK - FMC Loopback Module

6.10.1 Fields

Name Type Description
SOFT_RESET write action GTX Soft Reset
LOOP_PERIOD param Loopback toggle period for IO
FMC_PRSNT read FMC present
LINK_UP read GTX link status
ERROR_COUNT read GTX loopback
LA_P_ERROR read LA_P loopback status
LA_N_ERROR read LA_N loopback status
GTREFCLK read GT Ref clock freq
FMC_CLK0 read FMC CLK0 clock freq
FMC_CLK1 read FMC CLK1 clock freq
EXT_CLK read External clock freq
FMC_MAC_LO read MAC low in integer value bit 23:0
FMC_MAC_HI read MAC high in integer value bit 47:24

6.9. FMC_ACQ430 - FMC ACQ430 Module 41

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

6.11 INENC - Input encoder

The INENC block handles the encoder input signals

42 Chapter 6. Available Blocks

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

6.11. INENC - Input encoder 43

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

6.11.1 Fields

Name Type Description
CLK bit_mux Clock output to slave encoder
PROTOCOL param enum

Type of absolute/incremental
protocol
0 Quadrature
1 SSI
2 BISS
3 enDat

ENCODING param enum

Position encoding (for absolute
encoders)
0 Unsigned Binary
1 Unsigned Gray
2 Signed Binary
3 Signed Gray

CLK_SRC param enum

Bypass/Pass Through encoder
signals
0 Internally Generated
1 From CLK

CLK_PERIOD param time Clock rate
FRAME_PERIOD param time Frame rate
BITS param uint 63 Number of bits
LSB_DISCARD param uint 31 Number of LSB bits to discard
MSB_DISCARD param uint 31 Number of MSB bits to discard
SETP write int Set point
RST_ON_Z param bit Zero position on Z rising edge
A bit_out Quadrature A if in incremental

mode
B bit_out Quadrature B if in incremental

mode
Z bit_out Z index channel if in incremental

mode
DATA bit_out Data input from slave encoder
CONN bit_out Signal detected
HOMED read bit Quadrature homed status
HEALTH read enum

Table status
0 OK
1 Linkup error (=not CONN)
2 Timeout error (for BISS, monitor
SSI)
3 CRC error (for BISS)
4 Error bit active (for BISS)
5 ENDAT not implemented

VAL pos_out Current position
DCARD_TYPE read enum

Daughter card jumper mode
0 DCARD id 0
1 Encoder Control
2 DCARD id 2
3 Encoder Monitor
4 DCARD id 3
5 DCARD id 4
6 DCARD id 5
7 Unplugged

44 Chapter 6. Available Blocks

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

6.12 LUT - 5 Input lookup table

An LUT block produces an output that is determined by a user-programmable 5-input logic function, set with the
FUNC register.

6.12. LUT - 5 Input lookup table 45

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

46 Chapter 6. Available Blocks

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

6.12.1 Fields

Name Type Description
INPA bit_mux Input A
INPB bit_mux Input B
INPC bit_mux Input C
INPD bit_mux Input D
INPE bit_mux Input E
TYPEA param enum

Source of the value of A for
calculation
0 Input-Level
1 Pulse-On-Rising-Edge
2 Pulse-On-Falling-Edge
3 Pulse-On-Either-Edge

TYPEB param enum

Source of the value of B for
calculation
0 Input-Level
1 Pulse-On-Rising-Edge
2 Pulse-On-Falling-Edge
3 Pulse-On-Either-Edge

TYPEC param enum

Source of the value of C for
calculation
0 Input-Level
1 Pulse-On-Rising-Edge
2 Pulse-On-Falling-Edge
3 Pulse-On-Either-Edge

TYPED param enum

Source of the value of D for
calculation
0 Input-Level
1 Pulse-On-Rising-Edge
2 Pulse-On-Falling-Edge
3 Pulse-On-Either-Edge

TYPEE param enum

Source of the value of E for
calculation
0 Input-Level
1 Pulse-On-Rising-Edge
2 Pulse-On-Falling-Edge
3 Pulse-On-Either-Edge

FUNC param lut Input func
OUT bit_out Lookup table output6.12. LUT - 5 Input lookup table 47

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

6.12.2 Testing Function Output

This set of tests sets the function value and checks whether the output is as expected

The value of FUNC is a 32-bit unsigned int representing the truth table output of the 5 inputs. The mapping of the
string to an integer is done by the PandABlocks TCP server.

A&B&C&D&E (FUNC= 0x80000000). Setting all inputs to 1 results in an output of 1, and changing any inputs
produces an output of 0

0 2 4 6 8 10 12
Timestamp (125MHz FPGA clock ticks)

0x80000000FUNC

INPA

INPB

INPC

INPD

INPE

OUT

A&B&C&D&E Output

~A&~B&~C&~D&~E (FUNC= 0x00000001). Setting all inputs to 0 results in an output of 1, and changing any inputs
produces an output of 0

A (FUNC= 0xffff0000). The output should only be 1 if A is 1 irrespective of any other input.

A&B|C&~D (FUNC= 0xff303030)

6.12.3 Changing the function in a test

If a function is changed, the output will take effect on the next clock tick

6.12.4 Edge triggered inputs

We can also use the LUT to convert edges into levels by changing A..E to be one clock tick wide pulses based on
edges rather than the current level of INPA..INPE.

48 Chapter 6. Available Blocks

https://pandablocks-server.readthedocs.io/en/latest/fields.html#fields

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0 2 4 6 8 10 12 14
Timestamp (125MHz FPGA clock ticks)

0x00000001FUNC

INPA

INPB

INPC

INPD

INPE

OUT

~A&~B&~C&~D&~E Output

0 5 10 15 20 25
Timestamp (125MHz FPGA clock ticks)

0xffff0000FUNC

INPE

INPA

INPB

INPC

INPD

OUT

A output

6.12. LUT - 5 Input lookup table 49

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0 5 10 15 20 25
Timestamp (125MHz FPGA clock ticks)

0xff303030FUNC

INPA

INPB

INPC

INPD

OUT

A&B|C&~D output

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timestamp (125MHz FPGA clock ticks)

0x80000000 0x00000001FUNC

INPA

INPB

INPC

INPD

INPE

OUT

Changing function from A&B&C&D&E to ~A&~B&~C&~D&~E

50 Chapter 6. Available Blocks

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

If we wanted to produce a pulse only if INPA had a rising edge on the same clock tick as INPB had a falling edge we
could set FUNC=0xff000000 (A&B) and A=1 (rising edge of INPA) and B=2 (falling edge of INPB):

0 2 4 6 8 10 12
Timestamp (125MHz FPGA clock ticks)

0xff000000FUNC

1TYPEA

2TYPEB

INPA

INPB

OUT

Rising A & Falling B

We could also use this for generating pulses on every transition of A:

0 2 4 6 8 10
Timestamp (125MHz FPGA clock ticks)

0xffff0000FUNC

3TYPEA

INPA

OUT

Either edge A

6.13 LVDSIN - LVDS Input

The LVDSIN block handles the signals from the LVDS Input connectors

6.13. LVDSIN - LVDS Input 51

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

6.13.1 Fields

Name Type Description
VAL bit_out LVDS input value

6.14 LVDSOUT - LVDS Output

The LVDSOUT block handles the signals to the LVDS Output connectors

6.14.1 Fields

Name Type Description
VAL bit_mux LVDS output value

6.15 OUTENC - Output encoder

The OUTENC block handles the encoder output signals

52 Chapter 6. Available Blocks

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

6.15. OUTENC - Output encoder 53

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

6.15.1 Fields

Name Type Description
ENABLE bit_mux Halt of falling edge, reset and enable

on rising
GENERATOR_ERROR param enum

generate error on output
0 No
1 BISS frame error bit

A bit_mux Input for A (only straight through)
B bit_mux Input for B (only straight through)
Z bit_mux Input for Z (only straight through)
DATA bit_mux Data output to master encoder
PROTOCOL param enum

Type of absolute/incremental
protocol
0 Quadrature
1 SSI
2 BISS
3 enDat
4 ABZ Passthrough
5 DATA Passthrough

ENCODING param enum

Position encoding (for absolute
encoders)
0 Unsigned Binary
1 Unsigned Gray
2 Signed Binary
3 Signed Gray

BITS param uint 32 Number of bits
QPERIOD param time Quadrature prescaler
CLK bit_out Clock input from master encoder
VAL pos_mux Input for position (all other proto-

cols)
HEALTH read enum

Table status
0 OK
1 Biss timeout error (did not
received right number of sck for
biss frame)
2 ENDAT not implemented

DCARD_TYPE read enum

Daughter card jumper mode
0 DCARD id 0
1 Encoder Control
2 DCARD id 2
3 Encoder Monitor
4 DCARD id 3
5 DCARD id 4
6 DCARD id 5
7 Unplugged

QSTATE read enum

Quadrature state
0 Disabled
1 At position
2 Slewing

54 Chapter 6. Available Blocks

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

6.16 PCAP - Position Capture

Position capture has the capability to capture anything that is happening on the pos_bus or bit_bus. It listens to
ENABLE, GATE and CAPTURE signals, and can capture the value at capture, sum, min and max.

6.16.1 Fields

Name Type Description
ENABLE bit_mux After arm, when high start capture,

when low disarm
GATE bit_mux After enable, only process gated val-

ues if high
TRIG bit_mux On selected edge capture current

value and gated data
TRIG_EDGE param enum

Which edge of capture input signal
triggers capture
0 Rising
1 Falling
2 Either

SHIFT_SUM param uint 8 Shift sum/samples data, use if
> 2**32 samples required in
sum/average

ACTIVE bit_out Data capture in progress
TS_START ext_out timestamp Timestamp of first gate high in cur-

rent capture relative to enable
TS_END ext_out timestamp Timestamp of last gate high +1 in

current capture relative to enable
TS_TRIG ext_out timestamp Timestamp of capture event relative

to enable
SAMPLES ext_out samples Number of gated samples in the cur-

rent capture
BITS0 ext_out bits 0 Quadrant 0 of bit_bus
BITS1 ext_out bits 1 Quadrant 1 of bit_bus
BITS2 ext_out bits 2 Quadrant 2 of bit_bus
BITS3 ext_out bits 3 Quadrant 3 of bit_bus
HEALTH read enum

Was last capture successful?
0 OK
1 Capture events too close together
2 Samples overflow

6.16.2 Arming

To start off the block an arm signal is required with a write to *PCAP.ARM=. The active signal is raised immediately
on ARM, and dropped either on *PCAP.DISARM:

6.16. PCAP - Position Capture 55

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0 2 4 6 8 10 12
Timestamp (125MHz FPGA clock ticks)

0ARM

0DISARM

ENABLE

ACTIVE

Arming and soft disarm

Or on the falling edge of ENABLE:

0 1 2 3 4 5 6 7 8
Timestamp (125MHz FPGA clock ticks)

0ARM

ENABLE

ACTIVE

Arming and hard disarm

6.16.3 Capturing fields

Capturing fields is done by specifying a series of WRITE addresses. These are made up of a mode in the bottom 4
bits, and an index in the 6 bits above them. Indexes < 32 refer to entries on the pos_bus, while indexes >= 32 are extra
entries specific to PCAP, like timestamps and number of gated samples. The values sent via the WRITE register are
written from the TCP server, so will not be visible to end users.

Data is ticked out one at a time from the DATA attribute, then sent to the TCP server over DMA, before being sent to
the user. It is reconstructed into a table in each of the examples below for ease of reading.

The following example shows PCAP being configured to capture the timestamp when CAPTURE goes high (0x24 is
the bottom 32-bits of TS_CAPTURE).

Row 0x240
0 2
1 6

56 Chapter 6. Available Blocks

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0 5 10 15 20 25
Timestamp (125MHz FPGA clock ticks)

0START_WRITE

0x240WRITE

0ARM

ENABLE

TRIG

ACTIVE

Row1 Row2DATA

Capture timestamp

6.16.4 Pos bus capture

As well as general fields like the timestamp, any pos_bus index can be captured. Pos bus fields have multiple modes
that they can capture in.

Mode 0 - Value

This gives an instantaneous capture of value no matter what the state of GATE:

Row 0x50
0 20
1 100
2 6

Mode 1 - Difference

This is mainly used for something like an incrementing counter value. It will only count the differences while GATE
was high:

Row 0xB1
0 10
1 -5

Mode 2/3 - Sum Lo/Hi

Mode 2 is the lower 32-bits of the sum of all samples while GATE was high:

6.16. PCAP - Position Capture 57

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0 5 10 15 20 25
Timestamp (125MHz FPGA clock ticks)

0START_WRITE

0x50WRITE

20 100 6 2POS[5]

0ARM

ENABLE

TRIG

ACTIVE

Row1 Row2 Row3DATA

Capture pos bus entry 5 Value

Row 0x32
0 6
1 21
2 206

Mode 2 and 3 together gives the full 64-bits of sum, needed for any sizeable values on the pos_bus:

Row 0x22 0x23
0 1073741824 0
1 -1073741824 0
2 -2147483648 2
3 -1073741824 -1
4 -1073741824 -2

If long frame times (> 2**32 SAMPLES, > 30s), are to be used, then SHIFT_SUM can be used to shift both the sum
and SAMPLES field by up to 8-bits to accomodate up to 125 hour frames. This example demonstrates the effect with
smaller numbers:

Row 0x92 0x260
0 40 1
1 36 1
2 -13 1
3 0 0

58 Chapter 6. Available Blocks

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0 5 10 15 20 25 30
Timestamp (125MHz FPGA clock ticks)

0START_WRITE

0xB1WRITE

0ARM

10 20 24 30 22 13POS[11]

ENABLE

GATE

TRIG

ACTIVE

Row1 Row2DATA

Capture pos bus entry 11 Difference

6.16. PCAP - Position Capture 59

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0 5 10 15 20 25 30
Timestamp (125MHz FPGA clock ticks)

3 4 5 6 9 103 102POS[3]

0START_WRITE

0x32WRITE

0ARM

ENABLE

GATE

TRIG

ACTIVE

Row1 Row2 Row3DATA

Capture pos bus entry 3 Sum

60 Chapter 6. Available Blocks

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0 5 10 15 20 25 30 35 40 45
Timestamp (125MHz FPGA clock ticks)

0x40000000 -0x40000000POS[2]

0START_WRITE

0x22 0x23WRITE

0ARM

ENABLE

GATE

TRIG

ACTIVE

Row0Row1 Row2Row3 Row4DATA

Capture pos bus entry 2 Sum large values

6.16. PCAP - Position Capture 61

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0 5 10 15 20 25 30 35
Timestamp (125MHz FPGA clock ticks)

1SHIFT_SUM

0START_WRITE

0x92 0x260WRITE

27 19 -13 -9POS[9]

0ARM

GATE

ENABLE

TRIG

ACTIVE

Row0 Row1 Row2Row3DATA

Capture pos bus entry 9 Sum shifted

62 Chapter 6. Available Blocks

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

Mode 4/5 - Min/Max

Both of these modes calculate statistics on the value while GATE is high.

Mode 4 produces the min of all values or zero if the gate was low for all of the current capture:

0 5 10 15 20 25 30
Timestamp (125MHz FPGA clock ticks)

0START_WRITE

0x84WRITE

35 10 20 8 30 22 21POS[8]

0ARM

GATE

ENABLE

TRIG

ACTIVE

Row1 Row2 Row3Row4DATA

Capture pos bus entry 8 Min

Row 0x84
0 10
1 20
2 21
3 2147483647

Mode 5 produces the max of all values in a similar way:

Row 0x45
0 20
1 20
2 22
3 -2147483648

6.16. PCAP - Position Capture 63

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0 5 10 15 20 25 30
Timestamp (125MHz FPGA clock ticks)

0START_WRITE

0x45WRITE

35 10 20 24 30 22 21POS[4]

0ARM

GATE

ENABLE

TRIG

ACTIVE

Row1 Row2 Row3Row4DATA

Capture pos bus entry 4 Max

64 Chapter 6. Available Blocks

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

6.16.5 Number of samples

There is a SAMPLES field that can be captured that will give the number of clock ticks that GATE was high during a
single CAPTURE. This field allows the TCP server to offer “Mean” as a capture option, dividing “Sum” by SAMPLES
to get the mean value of the field during the capture period. It can also be captured separately to give the gate length:

0 5 10 15 20 25 30
Timestamp (125MHz FPGA clock ticks)

0START_WRITE

0x260WRITE

0ARM

GATE

ENABLE

TRIG

ACTIVE

Row1 Row2 Row3Row4DATA

Capture gate length

Row 0x260
0 4
1 3
2 2
3 0

6.16.6 Timestamps

As well as the timestamp of the capture signal, timestamps can also be generated for the start of each capture period
(first gate high signal) and end (the tick after the last gate high). These are again split into two 32-bit segments so
only the lower bits need to be captured for short captures. In the following example we capture TS_START (0x20),
TS_END (0x22) and TS_CAPTURE (0x24) lower bits:

Row 0x200 0x220 0x240
0 0 4 4
1 4 8 9
2 11 13 13
3 -1 -1 16

6.16. PCAP - Position Capture 65

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0 5 10 15 20 25 30 35
Timestamp (125MHz FPGA clock ticks)

0START_WRITE

0x200 0x220 0x240WRITE

0ARM

GATE

ENABLE

TRIG

ACTIVE

Row0 Row1 Row2 Row3DATA

Capture more timestamps

6.16.7 Bit bus capture

The state of the bit bus at capture can also be captured. It is split into 4 quadrants of 32-bits each. For example, to
capture signals 0..31 on the bit bus we would use BITS0 (0x27):

Row 0x270
0 0
1 4
2 20
3 16

By capturing all 4 quadrants (0x27..0x2A) we get the whole bit bus:

Row 0x270 0x280 0x290 0x2A0
0 4 0 0 0
1 4 67108864 0 0
2 4 67108864 0 32
3 1028 67108864 0 32

6.16.8 Triggering options

ENABLE and GATE are level triggered, with ENABLE used for marking the start and end of the entire acquisition,
and GATE used to accept or reject samples within a single capture from the acquisition. CAPTURE is edge triggered

66 Chapter 6. Available Blocks

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0 5 10 15 20 25 30
Timestamp (125MHz FPGA clock ticks)

0START_WRITE

0x270WRITE

0ARM

1BIT[4]

ENABLE

TRIG

BIT[2]

ACTIVE

Row1Row2 Row3 Row4DATA

Capture bit bus quadrant 0

6.16. PCAP - Position Capture 67

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0 5 10 15 20 25 30 35
Timestamp (125MHz FPGA clock ticks)

0START_WRITE

0x270 0x280 0x290 0x2A0WRITE

0ARM

1BIT[2]

1BIT[58]

1BIT[101]

1BIT[10]

ENABLE

TRIG

ACTIVE

Row0 Row1 Row2 Row3DATA

Capture bit bus all quadrants

68 Chapter 6. Available Blocks

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

with an option to trigger on rising, falling or both edges.

Triggering on rising is the default, explored in the preceding examples. Triggering on falling edge would be used if
you have a gate signal that marks the capture boundaries and want sum or difference data within. For example, to
capture the amount POS[1] changes in each capture gate we could connect GATE and CAPTURE to the same signal:

0 5 10 15 20 25 30
Timestamp (125MHz FPGA clock ticks)

0START_WRITE

0x11WRITE

1TRIG_EDGE

0ARM

10 20 24 30 22 13POS[1]

ENABLE

GATE

TRIG

ACTIVE

Row1 Row2DATA

Gate and capture signals the same

Row 0x11
0 10
1 -9

Another option would be a gap-less acquisition of sum while gate is high with capture boundaries marked with a toggle
of CAPTURE:

Row 0x12
0 30
1 178
2 39

6.16. PCAP - Position Capture 69

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0 5 10 15 20 25 30
Timestamp (125MHz FPGA clock ticks)

0START_WRITE

0x12WRITE

2TRIG_EDGE

0ARM

10 20 24 30 22 13POS[1]

ENABLE

GATE

TRIG

ACTIVE

Row1 Row2 Row3DATA

Gap-less sum

70 Chapter 6. Available Blocks

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

6.16.9 Error conditions

The distance between capture signals must be at least the number of 32-bit capture fields. If 2 capture signals are too
close together HEALTH will be set to 1 (Capture events too close together).

In this example there are 3 fields captured (TS_CAPTURE_L, TS_CAPTURE_H, SAMPLES), but only 2 clock ticks
between the 2nd and 3rd capture signals:

0 5 10 15 20 25
Timestamp (125MHz FPGA clock ticks)

0START_WRITE

0x240 0x250 0x260WRITE

0ARM

ENABLE

TRIG

ACTIVE

Row0 Row1DATA

1HEALTH

Capture too close together

Row 0x240 0x250 0x260
0 1 0 0
1 5 0 0

6.17 PCOMP - Position Compare

The position compare block takes a position input and allows a regular number of threshold comparisons to take place
on a position input. The normal order of operations is something like this:

• If PRE_START > 0 then wait until position has passed START - PRE_START

• If START > 0 then wait until position has passed START and set OUT=1

• Wait until position has passed START + WIDTH and set OUT=0

• Wait until position has passed START + STEP and set OUT=1

• Wait until position has passed START + STEP + WIDTH and set OUT=0

• Continue until PULSES have been produced

6.17. PCOMP - Position Compare 71

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

It can be used to generate a position based pulse train against an input encoder or analogue system, or to work as
repeating comparator.

72 Chapter 6. Available Blocks

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

6.17. PCOMP - Position Compare 73

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

6.17.1 Fields

Name Type Description
ENABLE bit_mux Stop on falling edge, reset and en-

able on rising edge
INP pos_mux Position data from position-data bus
PRE_START param int INP must be this far from START

before waiting for START
START param int Pulse absolute/relative start position

value
WIDTH param int The relative distance between a ris-

ing and falling edge
STEP param int The relative distance between suc-

cessive rising edges
PULSES param The number of pulses to produce, 0

means infinite
RELATIVE param enum

If 1 then START is relative to the
position of INP at enable
0 Absolute
1 Relative

DIR param enum

Direction to apply all relative
offsets to
0 Positive
1 Negative
2 Either

ACTIVE bit_out Active output is high while block is
in operation

OUT bit_out Output pulse train
HEALTH read enum

Error details if anything goes wrong
0 OK
1 Position jumped by more than
STEP
2 Can’t guess DIR when
RELATIVE and PRE_START=0
and START=0

PRODUCED read The number of pulses produced
STATE read enum

The internal statemachine state
0 WAIT_ENABLE
1 WAIT_DIR
2 WAIT_PRE_START
3 WAIT_RISING
4 WAIT_FALLING

74 Chapter 6. Available Blocks

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

6.17.2 Position compare is directional

A typical example would setup the parameters, enable the block, then start moving a motor to trigger a series of pulses:

0 5 10 15 20 25 30 35 40
Timestamp (125MHz FPGA clock ticks)

4START

3STEP

2WIDTH

3PULSES

2 3 4 5 6 7 8 9 10 11 12 13INP

1ENABLE

ACTIVE

OUT

2 3 4 3 4 3 4 0STATE

1 2 3PRODUCED

3 Pulses in a +ve direction

But if we get the direction wrong, we won’t get the first pulse until we cross START in the correct direction:

Moving in a negative direction works in a similar way. Note that WIDTH and PULSE still have positive values:

6.17.3 Internal statemachine

The Block has an internal statemachine that is exposed as a parameter, allowing the user to see what the Block is
currently doing:

6.17. PCOMP - Position Compare 75

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0 5 10 15 20 25
Timestamp (125MHz FPGA clock ticks)

4START

3STEP

2WIDTH

2PULSES

5 4 3 4 5 6 7 8 9INP

1ENABLE

ACTIVE

OUT

2 3 4 3 4 0STATE

1 2PRODUCED

Enabled while crossing in wrong direction

76 Chapter 6. Available Blocks

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0 5 10 15 20 25
Timestamp (125MHz FPGA clock ticks)

2START

3STEP

2WIDTH

2PULSES

1DIR

3 2 1 0 -1 -2 -3 -4INP

1ENABLE

ACTIVE

OUT

2 3 4 3 4 0STATE

1 2PRODUCED

2 Pulses in a -ve direction

6.17. PCOMP - Position Compare 77

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

State 0
WAIT_ENABLE

State 1
WAIT_DIR

rising ENABLE
 & DIR=EITHER

State 2
WAIT_PRE_START

 rising
 ENABLE

State 4
WAIT_FALLING

rising
ENABLE

& RELATIVE
& START=0

 Can't guess
 DIR

 or Disabled

 DIR
 calculated

 DIR calculated
 &

 no PRE_START

 Disabled

State 3
WAIT_RISING

 < PRE_START >

jump >
WIDTH + STEP

 or Disabled

 >= pulse

 jump >
WIDTH + STEP

 or Finished
or Disabled

 >= pulse
 + WIDTH

6.17.4 Not generating a pulse more than once

A key part of position compare is not generating a pulse at a position more than once. This is to deal with noisy
encoders:

This means that care is needed if using direction sensing or relying on the directionality of the encoder when passing
the start position. For example, if we approach START from the negative direction while doing a positive position
compare, then jitter back over the start position, we will generate start at the wrong place. If you look carefully at the
statemachine you will see that the Block crossed into WAIT_START when INP < 4 (START), which is too soon for
this amount of jitter:

We can fix this by adding to the PRE_START deadband which the encoder has to cross in order to advance to the
WAIT_START state. Now INP < 2 (START-PRE_START) is used for the condition of crossing into WAIT_START:

6.17.5 Guessing the direction

We can also ask to the Block to calculate direction for us:

This is a one time calculation of direction at the start of operation, once the encoder has been moved enough to guess
the direction then it is fixed until the Block has finished producing pulses:

78 Chapter 6. Available Blocks

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0 5 10 15 20 25 30 35
Timestamp (125MHz FPGA clock ticks)

4START

3STEP

1WIDTH

2PULSES

2 3 4 5 6 5 4 3 4 5 6 7 8INP

1ENABLE

ACTIVE

OUT

2 3 4 3 4 0STATE

1 2PRODUCED

Only produce pulse once

6.17. PCOMP - Position Compare 79

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0 5 10 15 20 25 30 35 40
Timestamp (125MHz FPGA clock ticks)

4START

3STEP

2WIDTH

2PULSES

5 4 3 4 3 2 1 0 1 2 3 4 5 6 7 8 9INP

1ENABLE

ACTIVE

OUT

2 3 4 3 4 0STATE

1 2PRODUCED

Jittering over the start position

80 Chapter 6. Available Blocks

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0 5 10 15 20 25 30 35 40
Timestamp (125MHz FPGA clock ticks)

4START

3STEP

2WIDTH

2PULSES

2PRE_START

5 4 3 4 3 2 1 0 1 2 3 4 5 6 7 8 9INP

1ENABLE

ACTIVE

OUT

2 3 4 3 4 0STATE

1 2PRODUCED

Avoiding jitter problem with PRE_START

6.17. PCOMP - Position Compare 81

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0 5 10 15 20 25
Timestamp (125MHz FPGA clock ticks)

2START

3STEP

2WIDTH

2PULSES

2DIR

3 2 1 0 -1 -2 -3 -4INP

1ENABLE

ACTIVE

OUT

1 2 3 4 3 4 0STATE

1 2PRODUCED

Calculate direction to be -ve

82 Chapter 6. Available Blocks

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0 10 20 30 40 50
Timestamp (125MHz FPGA clock ticks)

4START

3STEP

2WIDTH

3PULSES

2DIR

2 3 4 3 1 -1 1 3 5 6 7 8 9 10 11 12 13INP

1ENABLE

ACTIVE

OUT

1 2 3 4 3 4 3 4 0STATE

1 2 3PRODUCED

Calculate direction to be +ve

6.17. PCOMP - Position Compare 83

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

6.17.6 Interrupting a scan

When the ENABLE input is set low the output will cease. This will happen even if the ENABLE is set low when there
are still cycles of the output pulse to generate, or if the ENABLE = 0 is set at the same time as a position match.

0 5 10 15 20 25 30
Timestamp (125MHz FPGA clock ticks)

10 9 8 7 6 5 4INP

5START

10STEP

7WIDTH

3PULSES

1DIR

ENABLE

ACTIVE

OUT

2 3 4 0STATE

1PRODUCED

Disable after start

6.17.7 Position compare on absolute values

Doing position compare on an absolute value adds additional challenges, as we are not guaranteed to see every transi-
tion. It works in much the same way as the previous examples, but we trigger on greater than or equal rather than just
greater than:

But what should the Block do if the output is 0 and the position jumps by enough to trigger a transition to 1 and
then back to 0? We handle this by setting HEALTH=”Error: Position jumped by more than STEP” and aborting the
compare:

Likewise if the output is 1 and the position causes us to need to produce a 0 then 1:

And if we skipped a larger number of points we get the same error:

84 Chapter 6. Available Blocks

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timestamp (125MHz FPGA clock ticks)

10 9 8 7 6 5 4 3INP

5START

10STEP

7WIDTH

1DIR

ENABLE

ACTIVE

2 3 0STATE

Disable with start

6.17.8 Relative position compare

We may want to nest position compare blocks, or respond to some external event. In which case, we expose the option
to a position compare relative to the latched position at the start:

If we want it to start immediately on ENABLE then we set START and PRE_START=0:

We can also guess the direction in relative mode:

This works when going negative too:

And with a PRE_START value we guess the direction to be the opposite to the direction the motor is travelling when
it exceeds PRE_START:

We cannot guess the direction when RELATIVE mode is set with no START or PRE_START though, the Block will
error in this case:

6.17.9 Use as a Schmitt trigger

We can also make use of a special case with STEP=0 and a negative WIDTH to create a Schmitt trigger that will
always trigger at START, and turn off when INP has dipped WIDTH below START:

We can use this same special case with a positive width to make a similar comparator that turns on at START and off
at START+WIDTH, triggering again when INP <= START:

6.18 PGEN - Position Generator

The position generator block produces an output position which is pre-defined in a table

6.18. PGEN - Position Generator 85

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0 5 10 15 20 25 30
Timestamp (125MHz FPGA clock ticks)

4START

5STEP

2WIDTH

2PULSES

9 1 5 7 8 9 15INP

1ENABLE

ACTIVE

OUT

2 3 4 3 4 0STATE

1 2PRODUCED

Absolute Pulses in a +ve direction

86 Chapter 6. Available Blocks

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0 5 10 15 20 25 30
Timestamp (125MHz FPGA clock ticks)

4START

5STEP

2WIDTH

9 1 5 7 8 11INP

1ENABLE

ACTIVE

OUT

2 3 4 3 0STATE

1PRODUCED

1HEALTH

Error skipping when OUT=0

6.18. PGEN - Position Generator 87

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timestamp (125MHz FPGA clock ticks)

4START

5STEP

2WIDTH

9 1 5 9INP

1ENABLE

ACTIVE

OUT

2 3 4 0STATE

1PRODUCED

1HEALTH

Error skipping when OUT=1

88 Chapter 6. Available Blocks

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0 5 10 15 20 25 30
Timestamp (125MHz FPGA clock ticks)

4START

5STEP

2WIDTH

9 1 5 7 8 80INP

1ENABLE

ACTIVE

OUT

2 3 4 3 0STATE

1PRODUCED

1HEALTH

Error is produced after skipping more than 2 compare points

6.18. PGEN - Position Generator 89

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0 5 10 15 20 25 30
Timestamp (125MHz FPGA clock ticks)

3START

4STEP

2WIDTH

2PULSES

1RELATIVE

1DIR

1 2 3 2 1 0 -1 -2 -3 -4 -5 -6 -7INP

1ENABLE

ACTIVE

OUT

2 3 4 3 4 0STATE

1 2PRODUCED

Relative position compare

90 Chapter 6. Available Blocks

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0 2 4 6 8 10 12
Timestamp (125MHz FPGA clock ticks)

4STEP

2WIDTH

2PULSES

1RELATIVE

1 2 4 6 8INP

ENABLE

ACTIVE

OUT

4 3 4 0STATE

1 2PRODUCED

Relative position compare no START

6.18. PGEN - Position Generator 91

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0 5 10 15 20 25 30
Timestamp (125MHz FPGA clock ticks)

3START

4STEP

2WIDTH

2PULSES

1RELATIVE

2DIR

1 2 3 4 5 6 7 8 9 10 11INP

1ENABLE

ACTIVE

OUT

1 4 3 4 0STATE

1 2PRODUCED

Guess relative direction +ve

92 Chapter 6. Available Blocks

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0 5 10 15 20 25 30
Timestamp (125MHz FPGA clock ticks)

3START

4STEP

2WIDTH

2PULSES

1RELATIVE

2DIR

1 2 3 2 1 0 -1 -2 -3 -4 -5 -6 -7INP

1ENABLE

ACTIVE

OUT

1 4 3 4 0STATE

1 2PRODUCED

Guess relative direction -ve

6.18. PGEN - Position Generator 93

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0 5 10 15 20 25 30
Timestamp (125MHz FPGA clock ticks)

2PRE_START

4STEP

2WIDTH

2PULSES

1RELATIVE

2DIR

5 4 3 2 1 2 3 4 5 6 7 8 10INP

1ENABLE

ACTIVE

OUT

1 2 3 4 3 4 0STATE

1 2PRODUCED

Guess relative direction +ve with PRE_START

94 Chapter 6. Available Blocks

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0 1 2 3 4 5 6 7 8
Timestamp (125MHz FPGA clock ticks)

4STEP

2WIDTH

2PULSES

1RELATIVE

2DIR

1 2INP

1ENABLE

ACTIVE

STATE

2HEALTH

Guess relative direction with no START

6.18. PGEN - Position Generator 95

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0 5 10 15 20 25 30 35
Timestamp (125MHz FPGA clock ticks)

4START

-2WIDTH

2PULSES

2 3 4 3 2 3 4 5 6 5 4 3 2INP

1ENABLE

ACTIVE

OUT

2 3 4 3 4 0STATE

1 2PRODUCED

Schmitt trigger

6.18.1 Fields

Name Type Description
ENABLE bit_mux Halt on falling edge, reset and en-

able on rising
TRIG bit_mux Trigger a sample to be produced
TABLE table

Table of positions to be output
POSITION The position to set
OUT to on trigger
31:0 POSITION int

REPEATS param Number of times the table will re-
peat

ACTIVE bit_out High when output is being produced
from the table

OUT pos_out Current sample
HEALTH read enum

Table status
0 OK
1 Table not ready
3 DMA overrun

96 Chapter 6. Available Blocks

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0 5 10 15 20 25 30 35
Timestamp (125MHz FPGA clock ticks)

3START

2WIDTH

2PULSES

2 3 4 5 6 5 4 3 2 3 4 5 6INP

1ENABLE

ACTIVE

OUT

2 3 4 3 4 0STATE

1 2PRODUCED

Repeating comparator

6.18.2 Normal operation

The output pulse will be generated regardless of the direction of the INP data

T1
POS
10
11
12
13
14
15
16
21
52
32

6.19 POSENC - Quadrature and step/direction encoder

The POSENC block handles the Quadrature and step/direction encoding

6.19. POSENC - Quadrature and step/direction encoder 97

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0 10 20 30 40 50
Timestamp (125MHz FPGA clock ticks)

2REPEATS

T1TABLE

1ENABLE

TRIG

ACTIVE

10 11 12 13 14 15 16 21 52 32 10 11 12 13 14 15 16 21 52 32OUT

Normal operation

6.19.1 Fields

Name Type Description
ENABLE bit_mux Halt on falling edge, reset and en-

able on rising
INP pos_mux Output position
PERIOD param time Minimum time between Quadrature

transitions of step pulses
PROTOCOL param enum

Quadrature or step/direction
0 Quadrature
1 Step/Direction

A bit_out Quadrature A/Step output
B bit_out Quadrature B/Direction output
STATE read enum

State of quadrature output
0 Disabled
1 At position
2 Slewing

6.19.2 Quadrature

When in the quadrature mode, the module will output signals A and B in different states as it counts up or down. When
counting up B will follow A and when counting down A will follow B. The period is the time between an edge on one
signal to the next edge of the other signal.

98 Chapter 6. Available Blocks

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

The input is initially set as the value of the INP line when ENABLE goes high. The system will then count to the
current value on the INP line, and when it reaches this value the output signals will stay as they are.

The state output is ‘0’ while ENABLE is low, ‘1’ when the count is equal to the signal on the INP line and ‘2’ while it
is counting towards the INP value.

0 10 20 30 40 50 60
Timestamp (125MHz FPGA clock ticks)

1 6 11 0INP

2PERIOD

0PROTOCOL

ENABLE

A

B

1 2 1 2 1 2 1 0STATE

Quadrature rising and falling

6.19.3 Step/Direction

In the Step/Direction mode the A output becomes a step output. This goes high on every period for one clock cycle
and is low for the remainder of the period. The B output becomes the direction output, it is ‘0’ when the internal
counter is lower than the inputted target value (it is counting up), and ‘1’ when it is greater or equal to.

6.20 PULSE - One-shot pulse delay and stretch

A PULSE block produces configurable width output pulses with an optional delay based on its parameters. It operates
in one of two modes:

• If WIDTH=0, then it acts as a delay line. The input pulse train will just be replayed after the given DELAY

• If WIDTH is non-zero, then each pulse edge that matches TRIG_EDGE will be delayed by the specified DELAY,
then generate NPULSES pulses of width WIDTH, with rising edges separated by STEP

6.20. PULSE - One-shot pulse delay and stretch 99

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0 20 40 60 80 100
Timestamp (125MHz FPGA clock ticks)

1 10 20INP

5PERIOD

0PROTOCOL

ENABLE

A

B

1 2 1 2 0STATE

Longer Period Quadrature

0 10 20 30 40 50 60
Timestamp (125MHz FPGA clock ticks)

1 6 11 1INP

2PERIOD

1PROTOCOL

ENABLE

A

B

1 2 1 2 1 2 1 0STATE

Step/Direction

100 Chapter 6. Available Blocks

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0 20 40 60 80 100
Timestamp (125MHz FPGA clock ticks)

1 10 20INP

5PERIOD

1PROTOCOL

ENABLE

A

B

1 2 1 2 0STATE

Longer Period Step/Direction

6.20.1 Fields

Name Type Description
ENABLE bit_mux Reset on falling edge, enable on ris-

ing
TRIG bit_mux Input pulse train
DELAY time Output pulse delay (0 for no delay)
WIDTH time Output pulse width (0 for input

pulse width)
PULSES param The number of pulses to produce on

each trigger, 0 means 1
STEP time If pulses > 1, the time between suc-

cessive pulse rising edges
TRIG_EDGE param enum

INP trigger edge
0 Rising
1 Falling
2 Either

OUT bit_out Output pulse train
QUEUED read uint 1023 Length of the delay queue
DROPPED read Number of pulses not produced be-

cause of an ERR condition

6.20. PULSE - One-shot pulse delay and stretch 101

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

6.20.2 Delay line

If WIDTH=0, then the Block acts as a delay line. DELAY must either be 0 or 5+ clock ticks. TRIG_EDGE, STEP,
and NPULSES are ignored.

If DELAY=0 the Block is a simple pass through:

0 10 20 30 40 50
Timestamp (125MHz FPGA clock ticks)

1TRIG_EDGE

1ENABLE

TRIG

OUT

No delay or stretch

If DELAY is non-zero, rising and falling edges will be inserted in the queue and output after the given DELAY:

0 5 10 15 20 25 30
Timestamp (125MHz FPGA clock ticks)

0WIDTH

10DELAY

1ENABLE

TRIG

OUT

1 2 1 0QUEUED

Pulse delay with no stretch

0 < DELAY < 5 will be treated as DELAY=5:

6.20.3 Pulse train generation

If WIDTH != 0 then the Block will operate in pulse train mode. If NPULSES is 0 or 1 then it will produce a single
pulse for each matching input pulse:

102 Chapter 6. Available Blocks

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0 10 20 30 40 50 60 70
Timestamp (125MHz FPGA clock ticks)

1DELAY

0WIDTH

ENABLE

TRIG

QUEUED

OUT

No WIDTH means a delay of 5 or more is required

0 5 10 15 20 25 30 35 40
Timestamp (125MHz FPGA clock ticks)

10WIDTH

10DELAY

ENABLE

TRIG

QUEUED

OUT

Pulse delay and stretch

6.20. PULSE - One-shot pulse delay and stretch 103

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0 10 20 30 40 50
Timestamp (125MHz FPGA clock ticks)

5WIDTH

10DELAY

ENABLE

TRIG

OUT

1 2 1 0QUEUED

Pulse train stretched and delayed

The output pulses are queued, so multiple pulses can be queued before output:

The TRIG_EDGE field can be used to select whether an input pulse queues an output on rising, falling, or both edges:

0 < WIDTH < 5 will be treated as WIDTH=5:

If PULSES > 1 then multiple output pulses will be generated, separated by STEP:

6.20.4 Pulse period error

The following example shows what happens when the period between pulses is too short. To avoid running output
pulses together, the DROPPED field is incremented and the input is dropped:

The queue length is 255, so if QUEUED reaches 255 then any new pulse will be dropped and also increment
DROPPED.

The DROPPED count is zeroed on rising edge of ENABLE.

6.20.5 Enabling the Block

There is an Enable signal that stops the Block from producing signals. Edges must occur while Enable is high to
trigger a pulse creation

If enable is dropped mid way through a pulse train, the output is set low and the QUEUED output is set to zero.

6.20.6 Changing parameters while Enabled

If any of the input parameters are changed while enabled, the queue is dropped and the state of the Block is reset:

104 Chapter 6. Available Blocks

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0 5 10 15 20 25
Timestamp (125MHz FPGA clock ticks)

5WIDTH

0DELAY

0TRIG_EDGE

ENABLE

TRIG

OUT

QUEUED

Pulse stretching with no delay activate on rising edge

0 5 10 15 20 25
Timestamp (125MHz FPGA clock ticks)

5WIDTH

0DELAY

1TRIG_EDGE

ENABLE

TRIG

OUT

QUEUED

Pulse stretching with no delay activate on falling edge

6.20. PULSE - One-shot pulse delay and stretch 105

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0 5 10 15 20 25 30 35
Timestamp (125MHz FPGA clock ticks)

5WIDTH

0DELAY

2TRIG_EDGE

ENABLE

TRIG

OUT

QUEUED

Pulse stretching with no delay activate on both edges

0 5 10 15 20 25 30 35 40 45
Timestamp (125MHz FPGA clock ticks)

1WIDTH

0DELAY

ENABLE

TRIG

OUT

QUEUED

No delay means a WIDTH of 5 or more is required

106 Chapter 6. Available Blocks

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0 5 10 15 20 25 30 35 40
Timestamp (125MHz FPGA clock ticks)

5WIDTH

0DELAY

9STEP

3PULSES

ENABLE

TRIG

OUT

QUEUED

1 2DROPPED

Multiple pulses with no delay

0 10 20 30 40 50 60
Timestamp (125MHz FPGA clock ticks)

5WIDTH

3DELAY

8STEP

ENABLE

TRIG

QUEUED

OUT

Small delay width combination

6.20. PULSE - One-shot pulse delay and stretch 107

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0 10 20 30 40 50
Timestamp (125MHz FPGA clock ticks)

5WIDTH

10DELAY

ENABLE

TRIG

DROPPED

OUT

1 21 0QUEUED

Stretched and delayed pulses too close together

0 5 10 15 20 25 30 35 40
Timestamp (125MHz FPGA clock ticks)

10DELAY

TRIG

ENABLE

OUT

1 2 3 4 3 2 3 2 1 0QUEUED

No pulses if disabled

108 Chapter 6. Available Blocks

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0 5 10 15 20 25 30 35 40
Timestamp (125MHz FPGA clock ticks)

6WIDTH

5DELAY

9STEP

3PULSES

ENABLE

TRIG

QUEUED

OUT

Multiple pulses interrupted

0 5 10 15 20 25 30 35 40 45
Timestamp (125MHz FPGA clock ticks)

10WIDTH

10 6DELAY

ENABLE

TRIG

QUEUED

OUT

Changing parameters resets pulses

6.20. PULSE - One-shot pulse delay and stretch 109

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

6.21 QDEC - Quadrature Decoder

The QDEC block handles the encoder Decoding

6.21.1 Fields

Name Type Description
LINKUP_INCR param bit link up incremental coder signal
A bit_mux Quadrature A
B bit_mux Quadrature B
Z bit_mux Z index channel
RST_ON_Z param bit Zero position on Z rising edge
SETP write int Set point
HOMED read bit Quadrature homed status
OUT pos_out Output position

6.21.2 Counting

The quadrature decoder counts, incrementing at each rising or falling edge of the sequence. If the sequence is reversed
the count will decrease at each edge. The initial value is set to the value of the SETP input.

0 5 10 15 20 25 30 35
Timestamp (125MHz FPGA clock ticks)

1LINKUP_INCR

A

B

1 2 3 4 5 6 7 8 9 10 11 12 13 14OUT

0HOMED

No Set Point

6.21.3 Resetting

Whilst counting, it can be reset to ‘0’ on while the Z input is high, provided that this functionality is enabled by setting
the RST_ON_Z input to ‘1’. If the SETP input is changed the count value changes to the new value.

6.21.4 Limitations

The block can continue to count when there is not a constant period between the pulses.

110 Chapter 6. Available Blocks

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0 20 40 60 80 100 120
Timestamp (125MHz FPGA clock ticks)

1LINKUP_INCR

1SETP

A

B

HOMED

1 2 3 4 5 6 7 8 9 10 9 8 7 6OUT

Up then Down

0 20 40 60 80 100 120
Timestamp (125MHz FPGA clock ticks)

1RST_ON_Z

1 55SETP

LINKUP_INCR

A

B

Z

HOMED

1 2 3 4 5 6 7 01 2 3 55 54 53 52OUT

Up then down with reset and change of Set Point

6.21. QDEC - Quadrature Decoder 111

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0 10 20 30 40 50
Timestamp (125MHz FPGA clock ticks)

1LINKUP_INCR

A

B

1 2 3 4 5 6 7 8 9 10OUT

0HOMED

Variable quadrature period

The output takes three clock pulses to update. If the inputs are changing faster than this, inputs can be lost.

0 2 4 6 8 10 12 14
Timestamp (125MHz FPGA clock ticks)

1LINKUP_INCR

A

B

1 2 3 4OUT

0HOMED

Faster input than output

6.22 SEQ - Sequencer

The sequencer block performs automatic execution of sequenced lines to produce timing signals. Each line optionally
waits for an external trigger condition and runs for an optional phase1, then a mandatory phase2 before moving to the
next line. Each line sets the block outputs during phase1 and phase2 as defined by user-configured mask. Individual
lines can be repeated, and the whole table can be repeated, with a value of 0 meaning repeat forever.

112 Chapter 6. Available Blocks

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

6.22. SEQ - Sequencer 113

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

6.22.1 Fields

Name Type Description
ENABLE bit_mux Stop on falling edge, reset and en-

able on rising edge
BITA bit_mux BITA for optional trigger condition
BITB bit_mux BITB for optional trigger condition
BITC bit_mux BITC for optional trigger condition
POSA pos_mux POSA for optional trigger condition
POSB pos_mux POSB for optional trigger condition
POSC pos_mux POSC for optional trigger condition
TABLE table short

Sequencer table of lines REPEATS
Number of times the line will
repeat TRIGGER The trigger
condition to start the phases
POSITION The position that can be
used in trigger condition TIME1
The time the optional phase 1
should take OUTA1 Output A value
during phase 1 OUTB1 Output B
value during phase 1 OUTC1
Output C value during phase 1
OUTD1 Output D value during
phase 1 OUTE1 Output E value
during phase 1 OUTF1 Output F
value during phase 1 TIME2 The
time the mandatory phase 2 should
take OUTA2 Output A value during
phase 2 OUTB2 Output B value
during phase 2 OUTC2 Output C
value during phase 2 OUTD2
Output D value during phase 2
OUTE2 Output E value during
phase 2 OUTF2 Output F value
during phase 2
15:0 REPEATS
19:16 TRIGGER enum
0 Immediate
1 BITA=0
2 BITA=1
3 BITB=0
4 BITB=1
5 BITC=0
6 BITC=1
7 POSA>=POSITION
8 POSA<=POSITION
9 POSB>=POSITION
10 POSB<=POSITION
11 POSC>=POSITION
12 POSC<=POSITION
63:32 POSITION int
95:64 TIME1
20:20 OUTA1
21:21 OUTB1
22:22 OUTC1
23:23 OUTD1
24:24 OUTE1
25:25 OUTF1
127:96 TIME2
26:26 OUTA2
27:27 OUTB2
28:28 OUTC2
29:29 OUTD2
30:30 OUTE2
31:31 OUTF2

PRESCALE param time Prescalar for sequencer table times
REPEATS param Number of times the table will re-

peat
ACTIVE bit_out Sequencer active flag
OUTA bit_out Output A for phase outputs
OUTB bit_out Output B for phase outputs
OUTC bit_out Output C for phase outputs
OUTD bit_out Output D for phase outputs
OUTE bit_out Output E for phase outputs
OUTF bit_out Output F for phase outputs
TABLE_REPEAT read Current iteration through the entire

table
TABLE_LINE read Current line in the table that is active
LINE_REPEAT read Current iteration of the active table

line
STATE read enum

Internal statemachine state
0 LOAD_TABLE
1 WAIT_ENABLE
2 WAIT_TRIGGER
3 PHASE1
4 PHASE2

114 Chapter 6. Available Blocks

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

6.22.2 Sequencer Table Line Composition

Bit Field Name Description
[15:0] REPEATS Number of times the line will repeat
[19:16] TRIGGER

The trigger condition to start the
phases
0: Immediate
1: BITA=0
2: BITA=1
3: BITB=0
4: BITB=1
5: BITC=0
6: BITC=1
7: POSA>=POSITION
8: POSA<=POSITION
9: POSB>=POSITION
10: POSB<=POSITION
11: POSC>=POSITION
12: POSC<=POSITION

[63:32] POSITION The position that can be used in trig-
ger condition

[95:64] TIME1 The time the optional phase 1
should take

[20:20] OUTA1 Output A value during phase 1
[21:21] OUTB1 Output B value during phase 1
[22:22] OUTC1 Output C value during phase 1
[23:23] OUTD1 Output D value during phase 1
[24:24] OUTE1 Output E value during phase 1
[25:25] OUTF1 Output F value during phase 1
[127:96] TIME2 The time the mandatory phase 2

should take
[26:26] OUTA2 Output A value during phase 2
[27:27] OUTB2 Output B value during phase 2
[28:28] OUTC2 Output C value during phase 2
[29:29] OUTD2 Output D value during phase 2
[30:30] OUTE2 Output E value during phase 2
[31:31] OUTF2 Output F value during phase 2

6.22.3 Generating fixed pulse trains

The basic use case is for generating fixed pulse trains when enabled. For example we can ask for 3x 50% duty cycle
pulses by writing a single line table that is repeated 3 times. When enabled it will become active and immediately start
producing pulses, remaining active until the pulses have been produced:

6.22. SEQ - Sequencer 115

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0 10 20 30 40 50
Timestamp (125MHz FPGA clock ticks)

1REPEATS

load... T1TABLE

ENABLE

ACTIVE

OUTA

1 3 4 3 4 3 4 1STATE

1 2 3LINE_REPEAT

1TABLE_LINE

1TABLE_REPEAT

3 evenly spaced pulses

116 Chapter 6. Available Blocks

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

T1
Trigger Phase1Phase1 Outputs Phase2Phase2 Outputs
Re-
peats

Con-
dition

Po-
si-
tion

Time A B C D E F Time A B C D E F

3 Imme-
diate

0 5 1 0 0 0 0 0 5 0 0 0 0 0 0

We can also use it to generate irregular streams of pulses on different outputs by adding more lines to the table. Note
that OUTB which was high at the end of Phase2 of the first line remains high in Phase1 of the second line:

0 10 20 30 40 50
Timestamp (125MHz FPGA clock ticks)

1REPEATS

load... T1TABLE

ENABLE

ACTIVE

OUTA

OUTB

1 3 4 3 4 34 34 34 1STATE

1 2 1 2 3LINE_REPEAT

1 2TABLE_LINE

1TABLE_REPEAT

Irregular pulses

T1
Trigger Phase1Phase1 Outputs Phase2Phase2 Outputs
Re-
peats

Con-
dition

Po-
si-
tion

Time A B C D E F Time A B C D E F

2 Imme-
diate

0 5 1 0 0 0 0 0 2 0 1 0 0 0 0

3 Imme-
diate

0 1 1 1 0 0 0 0 2 0 0 0 0 0 0

6.22. SEQ - Sequencer 117

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

And we can set repeats on the entire table too. Note that in the second line of this table we have suppressed phase1 by
setting its time to 0:

0 10 20 30 40 50 60
Timestamp (125MHz FPGA clock ticks)

2REPEATS

load... T1TABLE

ENABLE

OUTA

ACTIVE

OUTB

1 3 4 3 4 3 4 3 4 1STATE

1 2 1 2 1LINE_REPEAT

1 2 1 2TABLE_LINE

1 2TABLE_REPEAT

Table repeats

T1
Trigger Phase1Phase1 Outputs Phase2Phase2 Outputs
Re-
peats

Con-
dition

Po-
si-
tion

Time A B C D E F Time A B C D E F

2 Imme-
diate

0 5 1 0 0 0 0 0 2 0 0 0 0 0 0

1 Imme-
diate

0 0 0 0 0 0 0 0 5 0 1 0 0 0 0

There are 6 outputs which allow for complex patterns to be generated:

118 Chapter 6. Available Blocks

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0 10 20 30 40 50 60 70
Timestamp (125MHz FPGA clock ticks)

1REPEATS

load... T1TABLE

ENABLE

ACTIVE

OUTA

OUTB

OUTC

OUTD

OUTE

OUTF

1 3 4 3 4 3 4 1STATE

1 2 3TABLE_LINE

1LINE_REPEAT

1TABLE_REPEAT

Using all 6 outputs

6.22. SEQ - Sequencer 119

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

T1
Trigger Phase1Phase1 Outputs Phase2Phase2 Outputs
Re-
peats

Con-
dition

Po-
si-
tion

Time A B C D E F Time A B C D E F

1 Imme-
diate

0 3 1 0 0 0 0 0 4 1 1 0 0 0 0

1 Imme-
diate

0 5 1 1 1 0 0 0 6 1 1 1 1 0 0

1 Imme-
diate

0 7 1 1 1 1 1 0 8 1 1 1 1 1 1

6.22.4 Statemachine

There is an internal statemachine that controls which phase is currently being output. It has a number of transitions
that allow it to skip PHASE1 if there is none, or skip WAIT_TRIGGER if there is no trigger condition.

State 0
WAIT_ENABLE

State 1
LOAD_TABLE

 TABLE load started

State 2
WAIT_TRIGGER

 rising ENABLE and trigger not met

State 3
PHASE1

 rising ENABLE and trigger met

State 4
PHASE2

 rising ENABLE and trigger met and no phase1

 TABLE load complete

 TABLE load started

 trigger met

 trigger met and no phase1

 TABLE load started

 time1 elapsed

 TABLE load started

 next trigger not met

 next trigger met

 next trigger met and no phase1

6.22.5 External trigger sources

The trigger column in the table allows an optional trigger condition to be waited on before the phased times are started.
The trigger condition is checked on each repeat of the line, but not checked during phase1 and phase2. You can see
when the Block is waiting for a trigger signal as it will enter the WAIT_TRIGGER(2) state:

T1
Trigger Phase1Phase1 Outputs Phase2Phase2 Outputs
Re-
peats

Con-
dition

Po-
si-
tion

Time A B C D E F Time A B C D E F

3 BITA=1 0 2 1 0 0 0 0 0 1 0 0 0 0 0 0
1 BITB=1 0 3 0 1 0 0 0 0 2 0 0 0 0 0 0

120 Chapter 6. Available Blocks

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0 10 20 30 40 50
Timestamp (125MHz FPGA clock ticks)

1REPEATS

load... T1TABLE

ENABLE

BITA

BITB

ACTIVE

OUTA

OUTB

1 2 3 4 2 3 4 3 4 3 4 1STATE

1 2TABLE_LINE

1 2 3 1LINE_REPEAT

1TABLE_REPEAT

Waiting on bit inputs

6.22. SEQ - Sequencer 121

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

You can also use a position field as a trigger condition in the same way, this is useful to do a table based position
compare:

0 10 20 30 40 50 60
Timestamp (125MHz FPGA clock ticks)

1REPEATS

load... T1TABLE

19 20 19 16 12 9 7POSA

ENABLE

ACTIVE

OUTB

OUTA

12 4 34 34 34 2 34 34 1STATE

1 2 3TABLE_LINE

1 2 3 1 2LINE_REPEAT

1TABLE_REPEAT

Table based position compare

T1
Trigger Phase1Phase1 Outputs Phase2Phase2 Outputs
Re-
peats

Condition Po-
si-
tion

Time A B C D E F Time A B C D E F

1 POSA>=POSITION20 0 0 0 0 0 0 0 4 0 1 0 0 0 0
3 Immedi-

ate
0 1 1 1 0 0 0 0 3 0 1 0 0 0 0

2 POSA<=POSITION10 1 1 0 0 0 0 0 3 0 0 0 0 0 0

6.22.6 Prescaler

Each row of the table gives a time value for the phases. This value can be scaled with a block wide prescaler to allow
a frame to be longer than 2**32 * 8e-9 = about 34 seconds. For example:

122 Chapter 6. Available Blocks

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0 10 20 30 40 50 60
Timestamp (125MHz FPGA clock ticks)

1REPEATS

10PRESCALE

load... T1TABLE

ENABLE

ACTIVE

OUTA

1 3 4 3 4 1STATE

1 2LINE_REPEAT

1TABLE_LINE

1TABLE_REPEAT

Prescaled pulses

6.22. SEQ - Sequencer 123

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

T1
Trigger Phase1Phase1 Outputs Phase2Phase2 Outputs
Re-
peats

Con-
dition

Po-
si-
tion

Time A B C D E F Time A B C D E F

2 Imme-
diate

0 1 1 0 0 0 0 0 1 0 0 0 0 0 0

6.22.7 Interrupting a sequence

Setting the repeats on a table row to 0 will cause it to iterate until interrupted by a falling ENABLE signal:

0 5 10 15 20 25 30 35 40
Timestamp (125MHz FPGA clock ticks)

1REPEATS

load... T1TABLE

ENABLE

ACTIVE

OUTA

1 3 4 3 4 3 1STATE

1 2 3LINE_REPEAT

1TABLE_LINE

1TABLE_REPEAT

Infinite repeats of a row interrupted

T1
Trigger Phase1Phase1 Outputs Phase2Phase2 Outputs
Re-
peats

Con-
dition

Po-
si-
tion

Time A B C D E F Time A B C D E F

0 Imme-
diate

0 5 1 0 0 0 0 0 5 0 0 0 0 0 0

In a similar way, REPEATS=0 on a table will cause the whole table to be iterated until interrupted by a falling ENABLE
signal:

124 Chapter 6. Available Blocks

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0 5 10 15 20 25 30 35 40 45
Timestamp (125MHz FPGA clock ticks)

load... T1TABLE

ENABLE

ACTIVE

OUTA

1 4 1STATE

1 2 1 2 1LINE_REPEAT

1 2 1 2 1TABLE_LINE

1 2 3TABLE_REPEAT

Infinite repeats of a table interrupted

T1
Trigger Phase1Phase1 Outputs Phase2Phase2 Outputs
Re-
peats

Con-
dition

Po-
si-
tion

Time A B C D E F Time A B C D E F

1 Imme-
diate

0 0 0 0 0 0 0 0 5 1 0 0 0 0 0

2 Imme-
diate

0 0 0 0 0 0 0 0 3 0 0 0 0 0 0

And a rising edge of the ENABLE will re-run the same table from the start:

T1
Trigger Phase1Phase1 Outputs Phase2Phase2 Outputs
Re-
peats

Con-
dition

Po-
si-
tion

Time A B C D E F Time A B C D E F

1 Imme-
diate

0 5 1 0 0 0 0 0 5 0 0 0 0 0 0

6.22.8 Table rewriting

If a table is written while enabled, the outputs and table state are reset and operation begins again from the first repeat
of the first line of the table:

6.22. SEQ - Sequencer 125

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0 5 10 15 20 25 30 35 40 45
Timestamp (125MHz FPGA clock ticks)

load... T1TABLE

ENABLE

ACTIVE

OUTA

1 3 4 3 1 3 4 3 1STATE

1 2 1 2TABLE_REPEAT

1LINE_REPEAT

1TABLE_LINE

Restarting the same table

0 10 20 30 40 50
Timestamp (125MHz FPGA clock ticks)

load... T1 load... T2TABLE

ENABLE

ACTIVE

OUTA

TABLE_LINE

LINE_REPEAT

1 3 4 3 0 1 3 4 3 1STATE

1 2 0 1 2TABLE_REPEAT

Rewriting a table

126 Chapter 6. Available Blocks

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

T1
Trigger Phase1Phase1 Outputs Phase2Phase2 Outputs
Re-
peats

Con-
dition

Po-
si-
tion

Time A B C D E F Time A B C D E F

1 Imme-
diate

0 5 1 0 0 0 0 0 5 0 0 0 0 0 0

T2
Trigger Phase1Phase1 Outputs Phase2Phase2 Outputs
Re-
peats

Con-
dition

Po-
si-
tion

Time A B C D E F Time A B C D E F

1 Imme-
diate

0 8 1 0 0 0 0 0 2 0 0 0 0 0 0

6.22. SEQ - Sequencer 127

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

128 Chapter 6. Available Blocks

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

6.23 SFP_DLS_EVENTR - SFP Event Receiver Module

6.23.1 Fields

Name Type Description
EVENT_RESET write action Resets the event receiver
EVENT1 param enum

Event1 bit8 0 selects Event codes 1
selects DBus, bits7-0 event
272 MHz
288 Booster Clk
320 Storage Clk
122 Heart Beat
123 Reset Presc
124 Event Code
125 Reset Event
112 UT Seconds 0
113 UT Seonds 1
37 5Hz Event

EVENT2 param enum

Event2 bit8 0 selects Event codes 1
selects DBus, bits7-0 event
272 MHz
288 Booster Clk
320 Storage Clk
122 Heart Beat
123 Reset Presc
124 Event Code
125 Reset Event
112 UT Seconds 0
113 UT Seonds 1
37 5Hz Event

EVENT3 param enum

Event3 bit8 0 selects Event codes 1
selects DBus, bits7-0 event
272 MHz
288 Booster Clk
320 Storage Clk
122 Heart Beat
123 Reset Presc
124 Event Code
125 Reset Event
112 UT Seconds 0
113 UT Seonds 1
37 5Hz Event

EVENT4 param enum

Event4 bit8 0 selects Event codes 1
selects DBus, bits7-0 event
272 MHz
288 Booster Clk
320 Storage Clk
122 Heart Beat
123 Reset Presc
124 Event Code
125 Reset Event
112 UT Seconds 0
113 UT Seonds 1
37 5Hz Event

BIT1 bit_out SFP Bit 1 output
BIT2 bit_out SFP Bit 2 output
BIT3 bit_out SFP Bit 3 output
BIT4 bit_out SFP Bit 4 output
LINKUP read GTX_ER link status

6.23. SFP_DLS_EVENTR - SFP Event Receiver Module 129

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

6.24 SFP_LOOPBACK- SFP Loopback Module

6.24.1 Fields

Name Type Description
SOFT_RESET write action GTX Soft Reset
SFP_LOS read SFP Loss Of Signal (from SFP module)
LINK_UP read GTX link status
ERROR_COUNT read GTX error count
SFP_CLK read SFP clock freq
SFP_MAC_LO read MAC low in integer value bit 23:0
SFP_MAC_HI read MAC high in integer value bit 47:24

6.25 SFP_PANDA_SYNC - Synchronize data between 2 PandAs

6.25.1 Fields

Name Type Description
IN.SYNC_RESET write action Resets the event receiver
IN.LINKUP read GTX_SPS link status
IN.BIT1 bit_out SFP panda sync bit 1 input
IN.BIT2 bit_out SFP panda sync bit 2 input
IN.BIT3 bit_out SFP panda sync bit 3 input
IN.BIT4 bit_out SFP panda sync bit 4 input
IN.BIT5 bit_out SFP panda sync bit 5 input
IN.BIT6 bit_out SFP panda sync bit 6 input
IN.BIT7 bit_out SFP panda sync bit 7 input
IN.BIT8 bit_out SFP panda sync bit 8 input
IN.BIT9 bit_out SFP panda sync bit 9 input
IN.BIT10 bit_out SFP panda sync bit 10 input
IN.BIT11 bit_out SFP panda sync bit 11 input
IN.BIT12 bit_out SFP panda sync bit 12 input
IN.BIT13 bit_out SFP panda sync bit 13 input
IN.BIT14 bit_out SFP panda sync bit 14 input
IN.BIT15 bit_out SFP panda sync bit 15 input
IN.BIT16 bit_out SFP panda sync bit 16 input
IN.POS1 pos_out SFP panda sync pos 1 input
IN.POS2 pos_out SFP panda sync pos 2 input
IN.POS3 pos_out SFP panda sync pos 3 input
IN.POS4 pos_out SFP panda sync pos 4 input
OUT.BIT1 bit_mux SFP panda sync bit 1 output
OUT.BIT2 bit_mux SFP panda sync bit 2 output
OUT.BIT3 bit_mux SFP panda sync bit 3 output
OUT.BIT4 bit_mux SFP panda sync bit 4 output
OUT.BIT5 bit_mux SFP panda sync bit 5 output
OUT.BIT6 bit_mux SFP panda sync bit 6 output
OUT.BIT7 bit_mux SFP panda sync bit 7 output

Continued on next page

130 Chapter 6. Available Blocks

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

Table 1 – continued from previous page
Name Type Description
OUT.BIT8 bit_mux SFP panda sync bit 8 output
OUT.BIT9 bit_mux SFP panda sync bit 9 output
OUT.BIT10 bit_mux SFP panda sync bit 10 output
OUT.BIT11 bit_mux SFP panda sync bit 11 output
OUT.BIT12 bit_mux SFP panda sync bit 12 output
OUT.BIT13 bit_mux SFP panda sync bit 13 output
OUT.BIT14 bit_mux SFP panda sync bit 14 output
OUT.BIT15 bit_mux SFP panda sync bit 15 output
OUT.BIT16 bit_mux SFP panda sync bit 16 output
OUT.POS1 pos_mux SFP panda sync pos 1 output
OUT.POS2 pos_mux SFP panda sync pos 2 output
OUT.POS3 pos_mux SFP panda sync pos 3 output
OUT.POS4 pos_mux SFP panda sync pos 4 output

6.25. SFP_PANDA_SYNC - Synchronize data between 2 PandAs 131

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

6.26 SFP_UDPONTRIG - SFP UDP on trig Module

6.26.1 Fields

Name Type Description
SFP_TRIG bit_mux Rising edge to send UDP user-defined frame
SFP_START_COUNT write action Start counting Rising edge from zero and send UDP user-defined

frame
SFP_STOP_COUNT write action Stop counting Rising edge and stop sending UDP user-defined frame
SFP_DEST_UDP_PORT param uint

131071
Destination UDP Port (16 bits integer value)

SFP_OUR_UDP_PORT param uint
131071

Source UDP Port (16 bits integer value)

SFP_DEST_IP_AD_BYTE1param uint 255 Destination ip address byte 1 (byte integer value)
ip=BYTE1.BYTE2.BYTE3.BYTE4

SFP_DEST_IP_AD_BYTE2param uint 255 Destination ip address byte 2 (byte integer value)
ip=BYTE1.BYTE2.BYTE3.BYTE4

SFP_DEST_IP_AD_BYTE3param uint 255 Destination ip address byte 3 (byte integer value)
ip=BYTE1.BYTE2.BYTE3.BYTE4

SFP_DEST_IP_AD_BYTE4param uint 255 Destination ip address byte 4 (byte integer value)
ip=BYTE1.BYTE2.BYTE3.BYTE4

SFP_OUR_IP_AD_BYTE1param uint 255 Our source ip address byte 1 (byte integer value)
ip=BYTE1.BYTE2.BYTE3.BYTE4

SFP_OUR_IP_AD_BYTE2param uint 255 Our source ip address byte 2 (byte integer value)
ip=BYTE1.BYTE2.BYTE3.BYTE4

SFP_OUR_IP_AD_BYTE3param uint 255 Our source ip address byte 3 (byte integer value)
ip=BYTE1.BYTE2.BYTE3.BYTE4

SFP_OUR_IP_AD_BYTE4param uint 255 Our source ip address byte 4 (byte integer value)
ip=BYTE1.BYTE2.BYTE3.BYTE4

SOFT_RESET write action GTX Soft Reset
SFP_TRIG_RISE_COUNTread Rising edge count
SFP_COUNT_UDPTX_ERRread UDP TX ERROR count
SFP_STATUS_COUNT read SFP count status (‘0’ => not started, ‘1’ => count enabled)
SFP_LOS read Loss Of Signal (from SFP module)
SFP_MAC_LO read MAC low in integer value bit 23:0
SFP_MAC_HI read MAC high in integer value bit 47:24

6.27 SRGATE - Set Reset Gate

An SRGATE block produces either a high (SET) or low (RST) output. It has configurable inputs and an option to
force its output independently. Both Set and Rst inputs can be selected from bit bus, and the active-edge of its inputs
is configurable. An enable signal allows the block to ignore its inputs.

132 Chapter 6. Available Blocks

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

6.27.1 Fields

Name Type Description
ENABLE bit_mux Whether to listen to SET/RST

events
SET bit_mux A falling/rising edge sets the output

to 1
RST bit_mux a falling/rising edge resets the out-

put to 0
WHEN_DISABLED param enum

What to do with the output when
Enable is low
0 Set output low
1 Set output high
2 Keep current output

SET_EDGE param enum

Output set edge
0 Rising
1 Falling
2 Either

RST_EDGE param enum

Output reset edge
0 Rising
1 Falling
2 Either

FORCE_SET write action Set output to 1
FORCE_RST write action Reset output to 0
OUT bit_out output value

6.27.2 Normal conditions

The normal behaviour is to set the output OUT on the configured edge of the SET or RESET input.

6.27.3 Disabling the block

The default behaviour is to force the block output low when disabled, ignoring any SET/RST events:

The disabled value can also be set high:

Or left at its current value:

6.27.4 Active edge configure conditions

if the active edge is ‘rising’ then reset to ‘falling’ at the same time as a rising edge on the SET input, the block will
ignore the rising edge and set the output OUT on the falling edge of the SET input.

6.27. SRGATE - Set Reset Gate 133

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0 2 4 6 8 10
Timestamp (125MHz FPGA clock ticks)

1ENABLE

1FORCE_RST

SET

OUT

Set on rising Edge

0 2 4 6 8 10
Timestamp (125MHz FPGA clock ticks)

1SET_EDGE

1ENABLE

1FORCE_RST

SET

OUT

Set on falling Edge

134 Chapter 6. Available Blocks

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0 2 4 6 8 10 12 14
Timestamp (125MHz FPGA clock ticks)

2SET_EDGE

1ENABLE

1FORCE_RST

SET

RST

OUT

Set on either Edge RST default

0 2 4 6 8 10
Timestamp (125MHz FPGA clock ticks)

1ENABLE

SET

RST

OUT

Reset on rising Edge

6.27. SRGATE - Set Reset Gate 135

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0 2 4 6 8 10
Timestamp (125MHz FPGA clock ticks)

1RST_EDGE

1ENABLE

SET

RST

OUT

Reset on falling Edge

0 2 4 6 8 10 12 14
Timestamp (125MHz FPGA clock ticks)

2RST_EDGE

1SET_EDGE

1ENABLE

1FORCE_RST

SET

RST

OUT

Reset on either Edge SET falling

136 Chapter 6. Available Blocks

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0 2 4 6 8 10 12
Timestamp (125MHz FPGA clock ticks)

ENABLE

SET

OUT

Output low while disabled

0 2 4 6 8 10
Timestamp (125MHz FPGA clock ticks)

1WHEN_DISABLED

ENABLE

RST

OUT

Output high while disabled

0 2 4 6 8 10 12
Timestamp (125MHz FPGA clock ticks)

2WHEN_DISABLED

ENABLE

SET

RST

1OUT

Output left at current while disabled

6.27. SRGATE - Set Reset Gate 137

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0 2 4 6 8 10 12 14
Timestamp (125MHz FPGA clock ticks)

1ENABLE

1SET_EDGE

SET

FORCE_RST

OUT

Rising SET with SET_EDGE reconfigure

If the active edge changes to ‘falling’ at the same time as a falling edge on the SET input, the output OUT will be set
following this.

0 2 4 6 8 10 12
Timestamp (125MHz FPGA clock ticks)

1ENABLE

1SET_EDGE

SET

FORCE_RST

OUT

Falling SET with SET_EDGE reconfigure

6.27.5 Set-reset conditions

When determining the output if two values are set simultaneously, FORCE_SET and FORCE_RESET registers take
priority over the input bus, and reset takes priority over set.

138 Chapter 6. Available Blocks

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

0 2 4 6 8 10
Timestamp (125MHz FPGA clock ticks)

1ENABLE

1SET_EDGE

RST_EDGE

SET

RST

OUT

Falling RST with with reset edge reconfigure

0 5 10 15 20 25
Timestamp (125MHz FPGA clock ticks)

1ENABLE

1FORCE_SET

RST

SET

FORCE_RST

OUT

Set-reset conditions

6.27. SRGATE - Set Reset Gate 139

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

6.28 SYSTEM - System control FPGA

6.28.1 Fields

Name Type Description
TEMP_PSU read int On-board temperature [Power Sup-

ply]
TEMP_SFP read int On-board temperature [SFP]
TEMP_ENC_L read int On-board temperature [Left En-

coder]
TEMP_PICO read int On-board temperature [Picozed]
TEMP_ENC_R read int On-board temperature [Right En-

coder]
TEMP_ZYNQ read scalar On-board zynq temperature
ALIM_12V0 read scalar On-board voltage sensor values
PICO_5V0 read scalar On-board voltage sensor values
IO_5V0 read scalar On-board voltage sensor values
SFP_3V3 read scalar On-board voltage sensor values
FMC_15VN read scalar On-board voltage sensor values
FMC_15VP read scalar On-board voltage sensor values
ENC_24V read scalar On-board voltage sensor values
FMC_12V read scalar On-board voltage sensor values
PLL_LOCKED read PLL locked for SMA external clock
EXT_CLOCK param enum

External sma and event receiver
clock enables
0 int clock
1 sma clock
2 event receiver

EXT_CLOCK_FREQ read External clock freq
VCCINT read scalar On-board voltage sensor
CLK_SEL_STAT read Read-back of EXT/event reciever

clock select

6.29 TTLIN - TTL Input

The TTLIN block handles the signals from the TTL Input connectors

140 Chapter 6. Available Blocks

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

6.29.1 Fields

Name Type Description
TERM param enum

Select TTL input termination
0 High-Z
1 50-Ohm

VAL bit_out TTL input value

6.30 TTLOUT - TTL Output

The TTLOUT block handles the signals to the TTL Output connectors

6.30.1 Fields

Name Type Description
VAL bit_mux TTL output value

6.30. TTLOUT - TTL Output 141

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

142 Chapter 6. Available Blocks

CHAPTER 7

Contributing

Contributions and issues are most welcome! All issues and pull requests are handled through github on the Pand-
ABlocks repository. Also, please check for any existing issues before filing a new one. If you have a great idea but it
involves big changes, please file a ticket before making a pull request! We want to make sure you don’t spend your
time coding something that might not fit the scope of the project.

7.1 Running the tests

To get the source source code and run the unit tests, run:

$ git clone git://github.com/PandABlocks/PandABlocks-FPGA.git
$ cd PandABlocks-FPGA
$ virtualenv venv
$ source venv/bin/activate
$ pip install --upgrade pip
$ pip install -r tests/requirements.txt
$ cp CONFIG.example CONFIG
$ make test_python
$ make sim_timing

7.2 Writing VHDL

Code styling here. . .

7.3 Writing Python

Please arrange imports with the following style

143

https://github.com/PandABlocks/PandABlocks-FPGA/issues
https://github.com/PandABlocks/PandABlocks-FPGA/issues

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

Standard library imports
import os

Third party package imports
from mock import patch

Local package imports
from common.python.configs import BlockConfig

Please follow Google’s python style guide wherever possible.

7.4 Documentation

There are some conventions:

• First usage of a term in a page should link to an entry in the Glossary

• Glossary entries should define a reference with a trailing underscore

You can build the docs When in the project directory:

$ source venv/bin/activate
$ pip install -r docs/requirements.txt
$ make docs
$ firefox docs/index.html

7.5 Release Checklist

Before a new release, please go through the following checklist:

• Add a release note in CHANGELOG.rst

• Git tag the version

144 Chapter 7. Contributing

https://google.github.io/styleguide/pyguide.html

CHAPTER 8

Assembling Blocks into an App

A collections of Block instances that can be loaded to a PandABlocks Device is called an App. This section details how
to create and build a new App.

8.1 App ini file

An ini file is used to specify the Blocks that make up an App. It lives in the apps/ directory and has the extension
.app.ini. It consists of a top level section with information about the App, then a section for every Block in the
App.

8.1.1 The [.] section

The first section contains app wide information. It looks like this:

[.]
description: Short description of what this app will do
target: device_type

The description value is a human readable description of what the app contains and why it should be used.

The target value must correspond to a directory name in targets/ that will be used to wrap the blocks in a top
level entity that is loadable on the given PandABlocks device.

8.1.2 [BLOCK] sections

All other sections specify Block instance information. They look like this:

[MYBLOCK]
number: 4
module: mymodule
ini: myblock.block.ini

145

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

The section name is used to determine the name of the Block in the resulting App. It should be made of upper case
letters and underscores with no numbers.

The number value gives the number of blocks that will be instantiated in the App. If not specified it will default to 1.

The module value gives the directory in modules/ that the Block ini file lives in. If not specified it is the lowercase
version of the section name.

The ini value gives the Block ini filename relative to the module directory. If not specified it is the lowercase version
of the section name + .block.ini

8.2 App build process

Run:

make

And it will make a Zpkg for each App that can be loaded onto the PandABlocks Device. You can specify a subset of
Apps to be built in the top level CONFIG file by specifying something like:

APPS = PandABox-no-fmc

8.3 Querying the App at runtime

The app name can be queried at run time via the TCP server:

< *METADATA.APPNAME?
> OK =PandABox-fmc_24vio

146 Chapter 8. Assembling Blocks into an App

CHAPTER 9

Writing a Block

If you have checked the list of Available Blocks and need a feature that is not there you can extend an existing Block
or create a new one. If the feature fits with the behaviour of an existing Block and can be added without breaking
backwards compatibility it is preferable to add it there. If there is a new type of behaviour it may be better to make a
new one.

This page lists all of the framework features that are involved in making a Block, finding a Module for it, defining the
interface, writing the simulation, writing the timing tests, documenting the behaviour, and finally writing the logic.

9.1 Architecture

An overview of the build process is shown in this diagram, the stages and terminology are defined below:

147

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

9.2 Modules

Modules are subdirectories in modules/ that contain Block definitions. If you are writing a soft Block then you will
typically create a new Module for it. If you are writing a Block with hardware connections it will live in a Module for
that hardware (e.g. for the FMC card, or for that Target Platform).

To create a new module, simply create a new directory in modules/

9.3 Block ini

The first thing that should be defined when creating a new Block is the interface to the rest of the framework. This
consists of an ini file that contains all the information that the framework needs to integrate some VHDL logic into the
system. It lives in the Module directory and has the extension .block.ini. It consists of a top level section with
information about the Block, then a section for every Field in the Block.

9.3.1 The [.] section

The first entry to the ini file describes the block as a whole. It looks like this:

148 Chapter 9. Writing a Block

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

[.]
description: Short description of the Block
entity: vhdl_entity
type: dma or sfp or fmc
constraints:
ip:
otherconst:
extension:

The description should be a short (a few words) description that will be visible as a Block label to users of the
PandABlocks Device when it runs.

The entity should be the name of the VHDL entity that will be created to hold the logic. It is typically the lowercase
version of the Block name.

The type field will identify if the block is an SFP, FMC or DMA. These are special cases and need to be handled
differently. This field is automatically set to soft for soft blocks or carrier for carrier blocks.

The constraints is used to identify the location of any xdc constraints files, relative to the module’s directory.

The ip field holds the name of any ip blocks used in the module’s vhdl code.

otherconst is used to locate a tcl script if the block needs any further configuration.

If the extension field is present then the extensions directory in the module must exist and contain a python
server extension file.

9.3.2 [FIELD] sections

All other sections specify the Field that will be present in the Block. They look like this:

[MYFIELD]
type: type subtype options
description: Short description of the Field
extension: extension-parameter
extension_reg:
wstb:

The section name is used to determine the name of the Field in the resulting Block. It should be made of upper case
letters, numbers and underscores.

The type value gives information about the type which specifies the purpose and connections of the Field to the
system. It is passed straight through to the field specific line in the config file for the TCP server so should be written
according to type documentation. Subsequent indented lines in the config file are supplied according to the type
value and are documented in Extra Field Keys.

The description value gives a short (single sentence) description about what the Field does, visible as a tooltip to
users.

If extension is specified then this field is configured as an extension field. If the extension_reg field is also
specified then this field is also a hardware register.

If a signal uses a write strobe wstb should be set to True.

9.3.3 Extra Field Keys

Some field types accept extra numeric keys in the Field section to allow extra information to be passed to the TCP
server via its config file.

9.3. Block ini 149

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

Enum fields would contain numeric keys to translate specific numbers into user readable strings. Strings should be
lowercase letters and numbers with underscores and no spaces. A typical field might look like this:

[ENUM_FIELD]
type: param enum # or read enum or write enum
description: Short description of the Field
0: first_value
1: next_value
2: another_value
8: gappy_value

Tables will be defined here too

9.4 Block Simulation

The Block simulation framework allows the behaviour to be specified in Python and timing tests to be written against it
without writing any VHDL. This is beneficial as it allows the behaviour of the Block to be tied down and documented
while the logic is relatively easy to change. It also gives an accurate simulation of the Block that can be used to
simulate an entire PandABlocks Device.

The first step in making a Block Simulation is to define the imports:

from common.python.simulations import BlockSimulation, properties_from_ini, \
TYPE_CHECKING

if TYPE_CHECKING:
from typing import Dict

The typing imports allow IDEs like PyCharm to infer the types of the variables, increasing the chance of finding
bugs at edit time.

The BlockSimulation is a baseclass that our simulation should inherit from:

class common.python.simulations.BlockSimulation

changes = None
This will be dictionary with changes pushed by any properties created with properties_from_ini()

classmethod bits_to_int(bits)
Convert 32 element bit array into an int number

on_changes(ts, changes)
Handle field changes at a particular timestamp

Parameters

• ts (int) – The timestamp the changes occurred at

• changes (dict) – Field names that changed with their integer value

Returns If the Block needs to be called back at a particular ts then return that int, otherwise
return None and it will be called when a field next changes

Next we read the block ini file:

NAMES, PROPERTIES = properties_from_ini(__file__, "myblock.block.ini")

This generates two objects:

150 Chapter 9. Writing a Block

https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/stdtypes.html#dict

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

• NAMES: A collections.namedtuple with a string attribute for every field, for comparing field names
with.

• PROPERTIES: A property for each Field of the Block that can be attached to the BlockSimulation
class

Now we are ready to create our simulation class:

class MyBlockSimulation(BlockSimulation):
INP, ANOTHER_FIELD, OUT = PROPERTIES

def on_changes(self, ts, changes):
"""Handle field changes at a particular timestamp

Args:
ts (int): The timestamp the changes occurred at
changes (Dict[str, int]): Fields that changed with their value

Returns:
If the Block needs to be called back at a particular ts then return
that int, otherwise return None and it will be called when a field
next changes

"""
Set attributes
super(MyBlockSimulation, self).on_changes(ts, changes)

if NAMES.INP in changes:
If our input changed then set our output high
self.OUT = 1
Need to be called back next clock tick to set it back
return ts + 1

else:
The next clock tick set it back low
self.OUT = 0

This is a very simple Block, when INP changes, it outputs a 1 clock tick pulse on OUT. It checks the changes dict to
see if INP is in it, and if it is then sets OUT to 1. The framework only calls on_changes() when there are changes
unless informed when the Block needs to be called next. In this case we need to be called back the next clock tick
to set OUT back to zero, so we do this by returning ts + 1. When we are called back next clock tick then there
is nothing in the changes dict, so OUT is set back to 0 and return None so the framework won’t call us back until
something changes.

Note: If you need to use a field name in code, use an attribute of NAMES. This avoids mistakes due to typos like:

if "INPP" in changes:
code_that_will_never_execute

While if we use NAMES:

if NAMES.INPP in changes: # Fails with AttributeError

9.4. Block Simulation 151

https://docs.python.org/2.7/library/collections.html#collections.namedtuple
https://docs.python.org/2.7/library/functions.html#property

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

9.5 Timing ini

The purpose of the .timing.ini file is to provide expected data for comparison in the testing of the modules. Data should
be calculated as to how and when the module will behave with a range of inputs.

9.5.1 The [.] section

The first entry to the ini file describes the timing tests as a whole. It looks like this:

[.]
description: Timing tests for Block
scope: block.ini file

9.5.2 [TEST] sections

The other sections will display the tests inputs and outputs. It looks like this:

[NAME_OF_TEST]
1: inputA=1, inputB=2 -> output=3
5: inputC=4 -> output=7
6: inputD=-10 -> output=0, Error=1

The numbers at the left indicate the timestamp at which a change occurs, followed by a colon. Any assignments before
the -> symbol indicate a change in an input and assignments after the -> symbol indicate a change in an output.

9.6 Target ini

A target.ini is written for the blocks which are specific to the target. This ini file declares the blocks and their number
similar to the app.ini file.

9.6.1 The [.] section

The first entry to the ini file defines information for the SFP sites for the target:

[.]
sfp_sites:
sfp_constraints:

The sfp_sites type is the number of available SFP sites on the target, and the sfp_sites type is the name of the
constraints file for each SFP site, located in the target/const directory.

9.6.2 [BLOCK] sections

The block sections are handled in the same manner as those within the app.ini file, however the type, unless overwritten
in the block.ini files for these blocks is set to carrier, rather than soft.

152 Chapter 9. Writing a Block

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

9.7 Writing docs

Two RST directives, how to structure

9.8 Block VHDL entity

How to structure the VHDL entity

9.7. Writing docs 153

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

154 Chapter 9. Writing a Block

CHAPTER 10

Autogeneration framework architecture

10.1 Softblocks

10.2 Wrappers

How wrapper, config, desc, vhdl entities, test benches are generated

10.3 Config_d entries

common.python.configs.pad(name, spaces=19)
Pad the right of a name with spaces until it is at least spaces long

common.python.configs.all_subclasses(cls)
Recursively find all the subclasses of cls

class common.python.configs.BlockConfig(name, type, number, ini_path, site=None)
The config for a single Block

name = None
The name of the Block, like LUT

number = None
The number of instances Blocks that will be created, like 8

module_path = None
The path to the module that holds this block ini

ini_path = None
The path to the ini file for this Block, relative to ROOT

block_address = None
The Block section of the register address space

155

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

site = None
If the type == sfp, which site number

entity = None
The VHDL entity name, like lut

type = None
Is the block soft, sfp, fmc or dma?

constraints = None
Any constraints?

ip = None
Does the block require IP?

description = None
The description, like “Lookup table”

fields = None
All the child fields

block_suffixes = None
Are there any suffixes?

register_addresses(block_counters)
Register this block in the address space

filter_fields(regex, matching=True)
Filter our child fields by typ. If not matching return those that don’t match

generateInterfaceConstraints()
Generate MGT Pints constraints

class common.python.configs.RegisterConfig(name, number=-1, prefix=”, extension=”)
A low level register name and number backing this field

name = None
The name of the register, like INPA_DLY

number = None
The register number relative to Block, like 9

extension = None
For an extension field, the register path

class common.python.configs.BusEntryConfig(name, bus, index)
A bus entry belonging to a field

name = None
The name of the register, like INPA_DLY

bus = None
The bus the output is on, like bit

index = None
The bus index, like 5

class common.python.configs.FieldConfig(name, number, type, description, extra_config)
The config for a single Field of a Block

type_regex = None
Regex for matching a type string to this field

156 Chapter 10. Autogeneration framework architecture

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

name = None
The name of the field relative to it’s Block, like INPA

number = None
The number of instances Blocks that will be created, like 8

type = None
The complete type string, like param lut

description = None
The long description of the field

registers = None
The list of registers this field uses

bus_entries = None
The list of bus entries this field has

wstb = None
If a write strobe is required, set wstb to 1

extension = None
Store the extension register info

extra_config_lines = None
All the other extra config items

parse_extra_config(extra_config)
Produce any extra config lines from self.kwargs

register_addresses(counters)
Create registers using the FieldCounter object

address_line()
Produce the line that should go in the registers file after name

config_line()
Produce the line that should go in the config file after name

numbered_registers()
Filter self.registers, only producing registers with a number (not those that are purely extension registers)

class common.python.configs.BitOutFieldConfig(name, number, type, description, ex-
tra_config)

These fields represent a single entry on the bit bus

register_addresses(counters)
Create registers using the FieldCounter object

class common.python.configs.PosOutFieldConfig(name, number, type, description, ex-
tra_config)

These fields represent a position output

register_addresses(counters)
Create registers using the FieldCounter object

parse_extra_config(extra_config)
Produce any extra config lines from self.kwargs

config_line()
Produce the line that should go in the config file after name

10.3. Config_d entries 157

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

class common.python.configs.ExtOutFieldConfig(name, number, type, description, ex-
tra_config)

These fields represent a ext output

register_addresses(counters)
Create registers using the FieldCounter object

class common.python.configs.ExtOutTimeFieldConfig(name, number, type, description, ex-
tra_config)

These fields represent a ext output timestamp, which requires two registers

register_addresses(counters)
Create registers using the FieldCounter object

class common.python.configs.TableFieldConfig(name, number, type, description, ex-
tra_config)

These fields represent a table field

words = None
How many 32-bit words per line?

register_addresses(counters)
Create registers using the FieldCounter object

config_line()
Produce the line that should go in the config file after name

parse_extra_config(extra_config)
Produce any extra config lines from self.kwargs

class common.python.configs.TableShortFieldConfig(name, number, type, description, ex-
tra_config)

These fields represent a table field

lines = None
How many lines in the table?

parse_extra_config(extra_config)
Produce any extra config lines from self.kwargs

register_addresses(counters)
Create registers using the FieldCounter object

class common.python.configs.ParamFieldConfig(name, number, type, description, ex-
tra_config)

These fields represent all other set/get parameters backed with a single register

register_addresses(counters)
Create registers using the FieldCounter object

class common.python.configs.EnumParamFieldConfig(name, number, type, description, ex-
tra_config)

An enum field with its integer entries and string values

parse_extra_config(extra_config)
Produce any extra config lines from self.kwargs

class common.python.configs.UintParamFieldConfig(name, number, type, description, ex-
tra_config)

A special These fields represent all other set/get parameters backed with a single register

parse_extra_config(extra_config)
Produce any extra config lines from self.kwargs

158 Chapter 10. Autogeneration framework architecture

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

config_line()
Produce the line that should go in the config file after name

class common.python.configs.ScalarParamFieldConfig(name, number, type, description,
extra_config)

A special Read config for reading the different config of a read scalar

parse_extra_config(extra_config)
Produce any extra config lines from self.kwargs

config_line()
Produce the line that should go in the config file after name

class common.python.configs.BitMuxFieldConfig(name, number, type, description, ex-
tra_config)

These fields represent a single entry on the pos bus

register_addresses(counters)
Create registers using the FieldCounter object

class common.python.configs.PosMuxFieldConfig(name, number, type, description, ex-
tra_config)

The fields represent a position input multiplexer selection

register_addresses(counters)
Create registers using the FieldCounter object

class common.python.configs.TimeFieldConfig(name, number, type, description, ex-
tra_config)

The fields represent a configurable timer parameter

register_addresses(counters)
Create registers using the FieldCounter object

class common.python.configs.TargetSiteConfig(name, info)
The config for the target sites

type_regex = None
Regex for matching a type string to this field

name = None
The type of target site (SFP/FMC etc)

number = None
The info i in a string such as “3, i, io, o”

10.4 Test benches

A generic outline is common across the testbenches for the different blocks. There are four main areas of required
functionality: Assigning signals, reading expected data, assigning inputs to the UUT and reading the outputs and
comparing the outputs.

A template can therefore be used to autogenerate the testbench, with this common functionality, with the modifications
required for use with the different blocks.

10.4.1 Required signals in the block

Python code used has extracted the different signals which are required from the .block.ini file for each block.
Using this information, register signals are produced in the testbench for each signal, using the names from the INI file.

10.4. Test benches 159

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

However, not all signals are used in the same manner. Therefore the field type of each signal is also read to determine
the size of the required register for each signals. This is also used to determine whether the signal is an input or an
output signal. Each output signal requires a register signal similar to the the inputs, however they also require wire
signals for use with the UUT, this is differentiated by the suffix “_UUT” and an error register which is differentiated
by the suffix “_error”.

Integer signals are also declared for holding the file identifier, the $fscanf return value and the timestamp.

10.4.2 Read expected.csv

From the .timing.ini file within the block, a CSV file is generated which describes how the UUT should behave
under certain inputs at different times. The first line of the file contains strings with the names of each of the signals, the
first column being the timestamp data. All other lines contain numeric data for the timestamp, inputs and corresponding
outputs.

The file is opened in the testbench and read line by line. The first line, containing the names of the signals is discarded.
The numeric data is then read, when the timestamp value is equal to that in the file the values are assigned to the
corresponding registers in the testbench. The data in the file is ordered in the same way as the .block.ini file so
iterating through the signals in order, will assign the data to the correct registers.

10.4.3 Assign signals

The inputs to the entity for the block will have the same name as for those used in the testbench. It is therefore
straightforward to connect the signals. The registers with the same name as the outputs are being used for holding the
expected values, therefore the wire signals with the suffix “_uut” are used to read the output signals.

10.4.4 Compare output signals

To verify the correct functionality of the block, the outputted values will need to be compared to the expected values.
A simple comparison is implemented, if the two signals are not equal, set that output’s error signal to one and display
an error message to the user.

160 Chapter 10. Autogeneration framework architecture

CHAPTER 11

Change Log

All notable changes to this project will be documented in this file. This project adheres to Semantic Versioning.

11.1 Unreleased

Added:

• Started a changelog

Changed:

• Interface to the server, require 1.0 release of the server package

161

http://semver.org/

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

162 Chapter 11. Change Log

CHAPTER 12

Glossary

This section defines some commonly used PandABlocks terms.

12.1 App

An ini file that contains the type and number of Blocks that should be built together to form an FPGA image (loadable
on a PandABlocks device as a Zpkg).

12.2 Block

A piece of FPGA logic that has a number of Field instances and does some specified calculations on each FPGA clock
tick. It may be a soft Block like a SEQ, or have hardware connections like a TTLIN Block.

12.3 Field

An input, output or parameter of a Block.

12.4 Module

A directory containing Block definitions, logic, simulations and timing. Modules will typically contain a single soft
Block definition, or a number of hardware Blocks tied to a particular Target Platform, SFP or FMC card.

12.5 PandABox

A PandABlocks Device manufactured by Diamond Light Source and SOLEIL. Schematics on Open Hardware

163

https://en.wikipedia.org/wiki/Small_form-factor_pluggable_transceiver
https://en.wikipedia.org/wiki/FPGA_Mezzanine_Card
http://www.diamond.ac.uk
https://www.synchrotron-soleil.fr
https://www.ohwr.org/projects/pandabox/wiki

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

12.6 PandABlocks Device

A Zynq 7030 based device loaded with PandABlocks rootfs so that it runs the PandABlocks framework.

12.7 Target Platform

The physical Zynq based hardware that will be loaded with firmware to become a PandABlocks Device like a PandABox
or a Picozed Carrier

12.8 Zpkg

A specially formatted tar file of built files that can be deployed to a PandABlocks device

164 Chapter 12. Glossary

https://github.com/PandABlocks/PandABlocks-rootfs
http://zedboard.org/product/picozed-fmc-carrier-card-v2

CHAPTER 13

Running the tests

There are a number of different test systems in place within the PandABlocks-FPGA directory. There are python tests
to check the output of some of the Jinja2 templates, python tests to check the logic of the timing diagram and then
there are hdl testbenches which test the functionality of the blocks. The python tests are ran as part of the Travis tests
when a commit is made to the git repository, however the hdl testbenches have to be manually ran.

13.1 Python tests

The first of the python tests, checking the output of the Jinja2 templates, can be run from the Makefile:

make python_tests

The python simulation tests, can be run with the following Makefile command:

make python_timing

13.2 HDL tests

There are two Makefile functions which can be used to run the hdl testbenches:

make hdl_test (MODULE="module name")

make single_hdl_test TEST="MODULE_NAME TEST_NUMBER"

The first, by default, will run every testbench. However if the optional argument of MODULE is given it will instead
run every test for the specified module. Please note that the module name is the entity name for the top level hdl filein
that module.

The second command will run a single testbench as specified by the module name, and the test number separated by a
space.

165

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

166 Chapter 13. Running the tests

Python Module Index

c
common.python.configs, 155

167

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

168 Python Module Index

Index

A
address_line() (com-

mon.python.configs.FieldConfig method),
157

all_subclasses() (in module com-
mon.python.configs), 155

B
BitMuxFieldConfig (class in com-

mon.python.configs), 159
BitOutFieldConfig (class in com-

mon.python.configs), 157
bits_to_int() (com-

mon.python.simulations.BlockSimulation
class method), 150

block_address (common.python.configs.BlockConfig
attribute), 155

block_suffixes (com-
mon.python.configs.BlockConfig attribute),
156

BlockConfig (class in common.python.configs), 155
BlockSimulation (class in com-

mon.python.simulations), 150
bus (common.python.configs.BusEntryConfig attribute),

156
bus_entries (common.python.configs.FieldConfig at-

tribute), 157
BusEntryConfig (class in common.python.configs),

156

C
changes (common.python.simulations.BlockSimulation

attribute), 150
common.python.configs (module), 155
config_line() (common.python.configs.FieldConfig

method), 157
config_line() (com-

mon.python.configs.PosOutFieldConfig
method), 157

config_line() (com-
mon.python.configs.ScalarParamFieldConfig
method), 159

config_line() (com-
mon.python.configs.TableFieldConfig method),
158

config_line() (com-
mon.python.configs.UintParamFieldConfig
method), 158

constraints (common.python.configs.BlockConfig
attribute), 156

D
description (common.python.configs.BlockConfig

attribute), 156
description (common.python.configs.FieldConfig at-

tribute), 157

E
entity (common.python.configs.BlockConfig attribute),

156
EnumParamFieldConfig (class in com-

mon.python.configs), 158
extension (common.python.configs.FieldConfig at-

tribute), 157
extension (common.python.configs.RegisterConfig at-

tribute), 156
ExtOutFieldConfig (class in com-

mon.python.configs), 157
ExtOutTimeFieldConfig (class in com-

mon.python.configs), 158
extra_config_lines (com-

mon.python.configs.FieldConfig attribute),
157

F
FieldConfig (class in common.python.configs), 156
fields (common.python.configs.BlockConfig attribute),

156

169

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

filter_fields() (com-
mon.python.configs.BlockConfig method),
156

G
generateInterfaceConstraints() (com-

mon.python.configs.BlockConfig method),
156

I
index (common.python.configs.BusEntryConfig at-

tribute), 156
ini_path (common.python.configs.BlockConfig at-

tribute), 155
ip (common.python.configs.BlockConfig attribute), 156

L
lines (common.python.configs.TableShortFieldConfig

attribute), 158

M
module_path (common.python.configs.BlockConfig

attribute), 155

N
name (common.python.configs.BlockConfig attribute),

155
name (common.python.configs.BusEntryConfig at-

tribute), 156
name (common.python.configs.FieldConfig attribute),

156
name (common.python.configs.RegisterConfig attribute),

156
name (common.python.configs.TargetSiteConfig at-

tribute), 159
number (common.python.configs.BlockConfig attribute),

155
number (common.python.configs.FieldConfig attribute),

157
number (common.python.configs.RegisterConfig at-

tribute), 156
number (common.python.configs.TargetSiteConfig at-

tribute), 159
numbered_registers() (com-

mon.python.configs.FieldConfig method),
157

O
on_changes() (com-

mon.python.simulations.BlockSimulation
method), 150

P
pad() (in module common.python.configs), 155

ParamFieldConfig (class in com-
mon.python.configs), 158

parse_extra_config() (com-
mon.python.configs.EnumParamFieldConfig
method), 158

parse_extra_config() (com-
mon.python.configs.FieldConfig method),
157

parse_extra_config() (com-
mon.python.configs.PosOutFieldConfig
method), 157

parse_extra_config() (com-
mon.python.configs.ScalarParamFieldConfig
method), 159

parse_extra_config() (com-
mon.python.configs.TableFieldConfig method),
158

parse_extra_config() (com-
mon.python.configs.TableShortFieldConfig
method), 158

parse_extra_config() (com-
mon.python.configs.UintParamFieldConfig
method), 158

PosMuxFieldConfig (class in com-
mon.python.configs), 159

PosOutFieldConfig (class in com-
mon.python.configs), 157

R
register_addresses() (com-

mon.python.configs.BitMuxFieldConfig
method), 159

register_addresses() (com-
mon.python.configs.BitOutFieldConfig
method), 157

register_addresses() (com-
mon.python.configs.BlockConfig method),
156

register_addresses() (com-
mon.python.configs.ExtOutFieldConfig
method), 158

register_addresses() (com-
mon.python.configs.ExtOutTimeFieldConfig
method), 158

register_addresses() (com-
mon.python.configs.FieldConfig method),
157

register_addresses() (com-
mon.python.configs.ParamFieldConfig
method), 158

register_addresses() (com-
mon.python.configs.PosMuxFieldConfig
method), 159

register_addresses() (com-

170 Index

PandABlocks-FPGA Documentation, Release 3.0a1-11-gdb8fdc4-dirty

mon.python.configs.PosOutFieldConfig
method), 157

register_addresses() (com-
mon.python.configs.TableFieldConfig method),
158

register_addresses() (com-
mon.python.configs.TableShortFieldConfig
method), 158

register_addresses() (com-
mon.python.configs.TimeFieldConfig method),
159

RegisterConfig (class in common.python.configs),
156

registers (common.python.configs.FieldConfig at-
tribute), 157

S
ScalarParamFieldConfig (class in com-

mon.python.configs), 159
site (common.python.configs.BlockConfig attribute),

155

T
TableFieldConfig (class in com-

mon.python.configs), 158
TableShortFieldConfig (class in com-

mon.python.configs), 158
TargetSiteConfig (class in com-

mon.python.configs), 159
TimeFieldConfig (class in common.python.configs),

159
type (common.python.configs.BlockConfig attribute),

156
type (common.python.configs.FieldConfig attribute),

157
type_regex (common.python.configs.FieldConfig at-

tribute), 156
type_regex (common.python.configs.TargetSiteConfig

attribute), 159

U
UintParamFieldConfig (class in com-

mon.python.configs), 158

W
words (common.python.configs.TableFieldConfig

attribute), 158
wstb (common.python.configs.FieldConfig attribute),

157

Index 171

	PandABlocks-FPGA
	What can PandABlocks do?
	How is the documentation structured?

	Blinking LEDs Tutorial
	Opening the GUI
	Loading the tutorial design
	How the design works
	The Bit Bus
	Conclusion

	Position Capture Tutorial
	Loading the tutorial design
	How the design works
	Conclusion

	Position Compare Tutorial
	Snake Scan Tutorial
	Available Blocks
	BITS - Soft inputs and constant bits
	CALC - Position Calc
	CLOCK - Configurable clock
	COUNTER - Up/Down pulse counter
	DIV - Pulse divider
	FILTER - Filter
	FMC_24V - FMC 24V IO Module
	FMC_ACQ427 - FMC ACQ427 Module
	FMC_ACQ430 - FMC ACQ430 Module
	FMC_LOOPBACK - FMC Loopback Module
	INENC - Input encoder
	LUT - 5 Input lookup table
	LVDSIN - LVDS Input
	LVDSOUT - LVDS Output
	OUTENC - Output encoder
	PCAP - Position Capture
	PCOMP - Position Compare
	PGEN - Position Generator
	POSENC - Quadrature and step/direction encoder
	PULSE - One-shot pulse delay and stretch
	QDEC - Quadrature Decoder
	SEQ - Sequencer
	SFP_DLS_EVENTR - SFP Event Receiver Module
	SFP_LOOPBACK- SFP Loopback Module
	SFP_PANDA_SYNC - Synchronize data between 2 PandAs
	SFP_UDPONTRIG - SFP UDP on trig Module
	SRGATE - Set Reset Gate
	SYSTEM - System control FPGA
	TTLIN - TTL Input
	TTLOUT - TTL Output

	Contributing
	Running the tests
	Writing VHDL
	Writing Python
	Documentation
	Release Checklist

	Assembling Blocks into an App
	App ini file
	App build process
	Querying the App at runtime

	Writing a Block
	Architecture
	Modules
	Block ini
	Block Simulation
	Timing ini
	Target ini
	Writing docs
	Block VHDL entity

	Autogeneration framework architecture
	Softblocks
	Wrappers
	Config_d entries
	Test benches

	Change Log
	Unreleased

	Glossary
	App
	Block
	Field
	Module
	PandABox
	PandABlocks Device
	Target Platform
	Zpkg

	Running the tests
	Python tests
	HDL tests

	Python Module Index
	Index

